

A298063


T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 3, 4 or 6 kingmove adjacent elements, with upper left element zero.


8



0, 1, 1, 0, 4, 0, 1, 3, 3, 1, 0, 13, 0, 13, 0, 1, 32, 2, 2, 32, 1, 0, 53, 6, 11, 6, 53, 0, 1, 125, 13, 32, 32, 13, 125, 1, 0, 386, 22, 42, 441, 42, 22, 386, 0, 1, 727, 68, 104, 402, 402, 104, 68, 727, 1, 0, 1601, 132, 269, 1959, 474, 1959, 269, 132, 1601, 0, 1, 4568, 323, 523, 15304
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

Table starts
.0...1...0...1.....0.....1......0.......1........0.........1..........0
.1...4...3..13....32....53....125.....386......727......1601.......4568
.0...3...0...2.....6....13.....22......68......132.......323........790
.1..13...2..11....32....42....104.....269......523......1761.......4271
.0..32...6..32...441...402...1959...15304....32780....140541.....870916
.1..53..13..42...402...474...1753...11369....31565....166746.....877198
.0.125..22.104..1959..1753..11025..108798...282635...2229412...15477540
.1.386..68.269.15304.11369.108798.2461790..7033567..77043781.1129422899
.0.727.132.523.32780.31565.282635.7033567.26389664.350695381.5192087753


LINKS

R. H. Hardin, Table of n, a(n) for n = 1..219


FORMULA

Empirical for column k:
k=1: a(n) = a(n2)
k=2: a(n) = a(n1) +a(n2) +8*a(n3) 16*a(n5)
k=3: [order 17] for n>18
k=4: [order 71]


EXAMPLE

Some solutions for n=7 k=4
..0..1..0..1. .0..0..1..1. .0..1..0..0. .0..1..0..0. .0..0..1..1
..0..1..0..1. .0..0..1..1. .0..1..0..0. .0..1..0..0. .1..1..1..1
..1..1..1..1. .1..0..1..0. .1..1..0..1. .1..1..1..0. .1..1..1..0
..0..1..0..1. .1..0..1..0. .0..1..1..0. .0..1..0..1. .0..1..0..1
..0..1..0..1. .0..0..0..0. .0..1..0..0. .1..0..0..0. .1..0..0..0
..1..1..0..0. .1..0..1..0. .1..1..0..1. .1..1..0..1. .1..1..0..1
..1..1..0..0. .1..0..1..0. .1..1..0..1. .1..1..0..1. .1..1..0..1


CROSSREFS

Sequence in context: A307769 A096793 A155998 * A298712 A127538 A096008
Adjacent sequences: A298060 A298061 A298062 * A298064 A298065 A298066


KEYWORD

nonn,tabl


AUTHOR

R. H. Hardin, Jan 11 2018


STATUS

approved



