## Next In A Continuing Series

For today’s entry in the popular “I suppose everybody heard about this already like five years ago but I just found out about it now”, there’s the Online Encyclopedia of Integer Sequences, which is a half-century-old database (!) of various commonly appearing sequences of integers. It started, apparently, when Neil J A Sloane (a graduate student at Cornell University) needed to know the next terms in a sequence describing a particular property of trees, and he couldn’t find a way to look it up and so we got what I imagine to be that wonderful blend of frustration (“it should be easy to find this”) and procrastination (“surely having this settled once and for all will speed my dissertation”) that produces great things.

It’s even got a search engine, so that if you have the start of a sequence — say, “1, 4, 5, 16, 17, 20, 21” — it can find whether there’s any noteworthy sequences which begin that way and even give you a formula for finding successive terms, programming code for the terms, places in the literature where it might have appeared, and other neat little bits.

This isn’t foolproof, of course. Deductive logic will tell you that just because you know the first (say) ten terms in a sequence you don’t *actually* know what the eleventh will be. There are literally infinitely many possible successors. However, we’re not looking for deductive inevitability with this sort of search engine. We’re supposing that our sequence starts off describing some pattern that can be described by some rule that looks simple and attractive to human eyes. (So maybe my example doesn’t quite qualify, though their name for it makes it sound pretty nice.) There’s bits of whimsy (see the first link I posted), and chances to discover stuff I never heard of before (eg, the Wilson Primes: the encyclopedia says it’s believed there are infinitely many of them, but only three are known — 5, 13, and 563, with the next term unknown but certainly larger than 20,000,000,000,000), and plenty of stuff about poker and calendars.

Anyway, it’s got that appeal of a good reference tome in that you can just wander around it all afternoon and keep finding stuff that makes you say “huh”. (There’s a thing called Canada Perfect Numbers, but there are only four of them.)

*On the title: some may protest, correctly, that a sequence and a series are very different things. They are correct: mathematically, a sequence is just a string of numbers, while a series is the sum of the terms in a sequence, and so is a single number. It doesn’t matter. Titles obey a logic of their own. *

## Reply