Calculus without limits 5: log and exp


I’ve been on a bit of a logarithms kick lately, and I should say I’m not the only one. HowardAt58 has had a good number of articles about it, too, and I wanted to point some out to you. In this particular reblogging he brings a bit of calculus to show why the logarithm of the product of two numbere has to be the sum of the logarithms of the two separate numbers, in a way that’s more rigorous (if you’re comfortable with freshman calculus) than just writing down a couple examples along the lines of how 102 times 103 is equal to 105. (I won’t argue that having a couple specific examples might be better at communicating the point, but there’s a difference between believing something is so and being able to prove that it’s true.)

Saving school math

The derivative of the log function can be investigated informally, as log(x) is seen as the inverse of the exponential function, written here as exp(x). The exponential function appears naturally from numbers raised to varying powers, but formal definitions of the exponential function are difficult to achieve. For example, what exactly is the meaning of exp(pi) or exp(root(2)).
So we look at the log function:-
calculus5 text
calculus5 pic

View original post

Advertisements