Reversible and irreversible change


Entropy is hard to understand. It’s deceptively easy to describe, and the concept is popular, but to understand it is challenging. In this month’s entry CarnotCycle talks about thermodynamic entropy and where it comes from. I don’t promise you will understand it after this essay, but you will be closer to understanding it.

carnotcycle

rev01

Reversible change is a key concept in classical thermodynamics. It is important to understand what is meant by the term as it is closely allied to other important concepts such as equilibrium and entropy. But reversible change is not an easy idea to grasp – it helps to be able to visualize it.

Reversibility and mechanical systems

The simple mechanical system pictured above provides a useful starting point. The aim of the experiment is to see how much weight can be lifted by the fixed weight M1. Experience tells us that if a small weight M2 is attached – as shown on the left – then M1 will fall fast while M2 is pulled upwards at the same speed.

Experience also tells us that as the weight of M2 is increased, the lifting speed will decrease until a limit is reached when the weight difference between M2 and M1 becomes…

View original post 692 more words

Author: Joseph Nebus

I was born 198 years to the day after Johnny Appleseed. The differences between us do not end there. He/him.

2 thoughts on “Reversible and irreversible change”

    1. Ah, but even those dynamics are amazing. And the way the body works can tell us amazing things about the way physics works: Julius von Mayer’s observations that people’s blood was a deeper red — holding more oxygen — in the tropics compared to in Europe was one of the pieces leading people to the conservation of energy. Hermann von Helmholtz’s career in physics was inspired, in part, by a teacher proclaiming no one would ever know how fast a nerve impulse travelled; and he didn’t believe it, and became one of science’s immortals. There’s astounding things like this everywhere.

      Like

Please Write Something Good

This site uses Akismet to reduce spam. Learn how your comment data is processed.