Brian Fies’s **Mom’s Cancer** is a heartbreaking story. It’s compelling reading, but people who are emotionally raw from lost love ones, or who know they’re particularly sensitive to such stories, should consider before reading that the comic is about exactly what the title says.

But it belongs here because in the October 29th and the November 2nd installments are about a curiosity of area, and volume, and hypervolume, and more. That is that our perception of how big a thing is tends to be governed by one dimension, the length or the diameter of the thing. But its area is the square of that, its volume the cube of that, its hypervolume some higher power yet of that. So very slight changes in the diameter produce great changes in the volume. Conversely, though, great changes in volume will look like only slight changes. This can hurt.

Tom Toles’s **Randolph Itch, 2 am** from the 29th of October is a Roman numerals joke. I include it as comic relief. The clock face in the strip does depict 4 as IV. That’s eccentric but not unknown for clock faces; IIII seems to be more common. There’s not a clear reason why this should be. The explanation I find most nearly convincing is an aesthetic one. Roman numerals are flexible things, and can be arranged for artistic virtue in ways that Arabic numerals make impossible.

The aesthetic argument is that the four-character symbol IIII takes up nearly as much horizontal space as the VIII opposite it. The two-character IV would look distractingly skinny. Now, none of the symbols takes up exactly the same space as their counterpart. X is shorter than II, VII longer than V. But IV-versus-VIII does seem like the biggest discrepancy. Still, Toles’s art shows it wouldn’t look all that weird. And he had to conserve line strokes, so that the clock would read cleanly in newsprint. I imagine he also wanted to avoid using different representations of “4” so close together.

Jon Rosenberg’s **Scenes From A Multiverse** for the 29th of October is a riff on both quantum mechanics — Schödinger’s Cat in a box — and the uncertainty principle. The uncertainty principle can be expressed as a fascinating mathematical construct. It starts with Ψ, a probability function that has spacetime as its domain, and the complex-valued numbers as its range. By applying a function to this function we can derive yet another function. This function-of-a-function we call an operator, because we’re saying “function” so much it’s starting to sound funny. But this new function, the one we get by applying an operator to Ψ, tells us the probability that the thing described is in this place versus that place. Or that it has this speed rather than that speed. Or this angular momentum — the tendency to keep spinning — versus that angular momentum. And so on.

If we apply an operator — let me call it A — to the function Ψ, we get a new function. What happens if we apply another operator — let me call it B — to this new function? Well, we get a second new function. It’s much the way if we take a number, and multiply it by another number, and then multiply it again by yet another number. Of course we get a new number out of it. What would you expect? This operators-on-functions things looks and acts in many ways like multiplication. We even use symbols that look like multiplication: AΨ is operator A applied to function Ψ, and BAΨ is operator B applied to the function AΨ.

Now here is the thing we don’t expect. What if we applied operator B to Ψ first, and then operator A to the product? That is, what if we worked out ABΨ? If this was ordinary multiplication, then, nothing all that interesting. Changing the order of the real numbers we multiply together doesn’t change what the product is.

Operators are stranger creatures than real numbers are. It can be that BAΨ is *not* the same function as ABΨ. We say this means the operators A and B do not commute. But it can be that BAΨ *is* exactly the same function as ABΨ. When this happens we say that A and B *do* commute.

Whether they do or they don’t commute depends on the operators. When we know what the operators are we can say whether they commute. We don’t have to try them out on some functions and see what happens, although that sometimes is the easiest way to double-check your work. And here is where we get the uncertainty principle from.

The operator that lets us learn the probability of particles’ positions does not commute with the operator that lets us learn the probability of particles’ momentums. We get different answers if we measure a particle’s position and then its velocity than we do if we measure its velocity and then its position. (Velocity is not the same thing as momentum. But they are related. There’s nothing you can say about momentum in this context that you can’t say about velocity.)

The uncertainty principle is a great source for humor, and for science fiction. It seems to allow for all kinds of magic. Its reality is no less amazing, though. For example, it implies that it is impossible for an electron to spiral down into the nucleus of an atom, collapsing atoms the way satellites eventually fall to Earth. Matter can exist, in ways that let us have solid objects and chemistry and biology. This is at least as good as a cat being perhaps boxed.

Jan Eliot’s **Stone Soup Classics** for the 29th of October is a rerun from 1995. (The strip itself has gone to Sunday-only publication.) It’s a joke about how arithmetic is easy when you have the proper motivation. In 1995 that would include catching TV shows at a particular time. You see, in 1995 it was possible to record and watch TV shows when you wanted, but it required coordinating multiple pieces of electronics. It would often be easier to just watch when the show actually aired. Today we have it much better. You can watch anything you want anytime you want, using any piece of consumer electronics you have within reach, including several current models of microwave ovens and programmable thermostats. This does, sadly, remove one motivation for doing arithmetic. Also, I’m not certain the kids’ TV schedule is actually consistent with what was on TV in 1995.

Oh, heck, why not. Obviously we’re 14 minutes before the hour. Let me move onto the hour for convenience. It’s 744 minutes to the morning cartoons; that’s 12.4 hours. Taking the morning cartoons to start at 8 am, that means it’s currently 14 minutes before 24 minutes before 8 pm. I suspect a rounding error. Let me say they’re coming up on 8 pm. 194 minutes to Jeopardy implies the game show is on at 11 pm. 254 minutes to The Simpsons puts that on at midnight, which is probably true today, though I don’t think it was so in 1995 just yet. 284 minutes to Grace puts that on at 12:30 am.

I suspect that Eliot wanted it to be 978 minutes to the morning cartoons, which would bump Oprah to 4:00, Jeopardy to 7:00, Simpsons and Grace to 8:00 and 8:30, and still let the cartoons begin at 8 am. Or perhaps the kids aren’t that great at arithmetic yet.

Stephen Beals’s **Adult Children** for the 30th of October tries to build a “math error” out of repeated use of the phrase “I couldn’t care less”. The argument is that the thing one cares least about is unique. But why can’t there be two equally least-cared-about things?

We can consider caring about things as an optimization problem. Optimization problems are about finding the most of something given some constraints. If you want the least of something, multiply the thing you have by minus one and look for the most of that. You may giggle at this. But it’s the sensible thing to do. And many things can be equally high, or low. Take a bundt cake pan, and drizzle a little water in it. The water separates into many small, elliptic puddles. If the cake pan were perfectly formed, and set on a perfectly level counter, then the bottom of each puddle would be at the same minimum height. I grant a real cake pan is not perfect; neither is any counter. But you can imagine such.

Just because you can imagine it, though, must it exist? Think of the “smallest positive number”. The idea is simple. Positive numbers are a set of numbers. Surely there’s some smallest number. Yet there isn’t; name any positive number and we can name a smaller number. Divide it by two, for example. Zero is smaller than any positive number, but it’s not itself a positive number. A minimum might not exist, at least not within the confines where we are to look. It could be there is not something one could not care less about.

So a minimum might or might not exist, and it might or might not be unique. This is why optimization problems are exciting, challenging things.

Niklas Eriksson’s **Carpe Diem** for the 1st of November is about understanding the universe by way of observation and calculation. We do rely on mathematics to tell us things about the universe. Immanuel Kant has a bit of reputation in mathematical physics circles for this observation. (I admit I’ve never seen the original text where Kant observed this, so I may be passing on an urban legend. My love has several thousands of pages of Kant’s writing, but I do not know if any of them touch on natural philosophy.) If all we knew about space was that gravitation falls off as the square of the distance between two things, though, we could infer that space must have three dimensions. Otherwise that relationship would not make geometric sense.

Jeff Harris’s kids-information feature **Shortcuts** for the 1st of November was about the Harvard Computers. By this we mean the people who did the hard work of numerical computation, back in the days before this could be done by electrical and then electronic computer. Mathematicians relied on people who could do arithmetic in those days. There is the folkloric belief that mathematicians are inherently terrible at arithmetic. (I suspect the truth is people assume mathematicians must be better at arithmetic than they really are.) But here, there’s the mathematics of thinking what needs to be calculated, and there’s the mathematics of doing the calculations.

Their existence tends to be mentioned as a rare bit of human interest in numerical mathematics books, usually in the preface in which the author speaks with amazement of how people who did computing were once called computers. I wonder if books about font and graphic design mention how people who typed used to be called typewriters in their prefaces.

I wouldn’t have seen any of these without your blog. Thank you for including all of them.

Mom’s Cancer is sad but appears to be slightly improving. I hope for remission.

Adult Children makes an awesome point.

LikeLike

I’m glad you enjoy. (I’m assuming enjoy.) Part of what’s fun about doing these, besides that it provokes me to write about stuff I didn’t plan ahead of time to do, is that I get to read a great diversity of comic strips. And sometimes introduce people to comics they had no idea existed.

LikeLike

Hey Joseph

Thank you for visiting

As always Sheldon

LikeLike

Quite welcome. Glad to see you again.

LikeLike