## Reading the Comics, December 30, 2015: Seeing Out The Year Edition

There’s just enough comic strips with mathematical themes that I feel comfortable doing a last Reading the Comics post for 2015. And as maybe fits that slow week between Christmas and New Year’s, there’s not a lot of deep stuff to write about. But there is a Jumble puzzle.

Keith Tutt and Daniel Saunders’s **Lard’s World Peace Tips** gives us someone so wrapped up in measuring data as to not notice the obvious. The obvious, though, isn’t always right. This is why statistics is a deep and useful field. It’s why measurement is a powerful tool. Careful measurement and statistical tools give us ways to not fool ourselves. But it takes a lot of sampling, a lot of study, to give those tools power. It can be easy to get lost in the problems of gathering data. Plus numbers have this hypnotic power over human minds. I understand Lard’s problem.

Zach Weinersmith’s **Saturday Morning Breakfast Cereal** for the 27th of December messes with a kid’s head about the way we know 1 + 1 equals 2. The classic Principia Mathematica construction builds it out of pure logic. We come up with an idea that we call “one”, and another that we call “plus one”, and an idea we call “two”. If we don’t do anything weird with “equals”, then it follows that “one plus one equals two” must be true. But does the logic mean anything to the real world? Or might we be setting up a game with no relation to anything observable? The punchy way I learned this question was “one cup of popcorn added to one cup of water doesn’t give you two cups of soggy popcorn”. So why should the logical rules that say “one plus one equals two” tell us anything we might want to know about how many apples one has?

David L Hoyt and Jeff Knurek’s **Jumble** for the 28th of December features a mathematics teacher. That’s enough to include here. (You might have an easier time getting the third and fourth words if you reason what the surprise-answer word must be. You can use that to reverse-engineer what letters have to be in the circles.)

Richard Thompson’s **Richard’s Poor Almanac** for the 28th of December repeats the Platonic Fir Christmas Tree joke. It’s in color this time. Does the color add to the perfection of the tree, or take away from it? I don’t know how to judge.

Hilary Price’s **Rhymes With Orange** for the 29th of December gives its panel over to Rina Piccolo. Price often has guest-cartoonist weeks, which is a generous use of her space. Piccolo already has one and a sixth strips — she’s one of the Six Chix cartoonists, and also draws the charming Tina’s Groove — but what the heck. Anyway, this is a comic strip about the butterfly effect. That’s the strangeness by which a deterministic system can still be unpredictable. This counter-intuitive conclusion dates back to the 1890s, when Henri Poincaré was trying to solve the big planetary mechanics question. That question is: is the solar system stable? Is the Earth going to remain in about its present orbit indefinitely far into the future? Or might the accumulated perturbations from Jupiter and the lesser planets someday pitch it out of the solar system? Or, less likely, into the Sun? And the sad truth is, the best we can say is we can’t tell.

In Brian Anderson’s **Dog Eat Doug** for the 30th of December, Sophie ponders some deep questions. Most of them are purely philosophical questions and outside my competence. “What are numbers?” is also a philosophical question, but it feels like something a mathematician ought to have a position on. I’m not sure I can offer a good one, though. Numbers seem to be to be these things which we imagine. They have some properties and that obey certain rules when we combine them with other numbers. The most familiar of these numbers and properties correspond with some intuition many animals have about discrete objects. Many times over we’ve expanded the idea of what kinds of things might be numbers without losing the sense of how numbers can interact, somehow. And those expansions have generally been useful. They strangely match things we would like to know about the real world. And we can discover truths about these numbers and these relations that don’t seem to be obviously built into the definitions. It’s almost as if the numbers were real objects with the capacity to surprise and to hold secrets.

Why should that be? The lazy answer is that if we came up with a construct that didn’t tell us anything interesting about the real world, we wouldn’t bother studying it. A truly irrelevant concept would be a couple forgotten papers tucked away in an unread journal. But that is missing the point. It’s like answering “why is there something rather than nothing” with “because if there were nothing we wouldn’t be here to ask the question”. That doesn’t satisfy. Why should it be *possible* to take some ideas about quantity that ravens, raccoons, and chimpanzees have, then abstract some concepts like “counting” and “addition” and “multiplication” from that, and then modify those concepts, and finally have the modification be anything we can see reflected in the real world? There is a mystery here. I can’t fault Sophie for not having an answer.

## Thumbup 1:06 am

onFriday, 1 January, 2016 Permalink |LikeLike