Another Reasoning Puzzle From ChefMongoose


My friend ChefMongoose had another reasoning problem come to him, and I’m happy to share it further. It’s rather like that famous Singapore Birthday Problem that drove people crazy a couple of months ago. Here’s the problem:

I have a combination lock at work. There are three digits, all in the range 1 – 40; they’re all prime numbers. They’re X+Y, X+2Y, X+3Y — where X and Y are positive integers.

If I told you what X was but not Y, you wouldn’t be able to tell me the combination. If I told you what Y was but not X, you wouldn’t be able to tell me the combination. Now, what’s the combination?

I did work out the puzzle. It did make me notice a couple of strings of uniformly-spaced prime numbers I hadn’t done before, too, such as 3-13-23. (However, 3-13-23 isn’t one of the possible answers, because of the constraints of the problem. There aren’t positive X and Y for which X + Y = 3, X + 2Y = 13, and X + 3Y = 23.)

As with the Singapore Birthday Problem, this is a puzzle based on reasoning about the information we have. Mercifully there aren’t actually many prime numbers below 40, so if you want you can take the brute force approach and find all the strings of uniformly-spaced prime numbers. Then you can find what one matches the rules in ChefMongoose’s second paragraph.

I confess I wasn’t that systematic. I had a strong suspicion what the starting number of the sequence had to be, and then did some tests to be sure. I credit that to just having stared at lot at the smaller prime numbers in my life, so I’d had some intuitive feel for it. That’s a dangerous way to work. My intuitive feel, for example, hadn’t warned me about 3-13-23. But then there aren’t other trios of prime numbers spaced by ten, so that set would be ruled out by the “If I told you what Y was but not X” constraint. But now I know how to get stuff out of ChefMongoose’s work locker, you know, just in case.

Advertisements