What’s The Longest Proof I’ve Done?

You know what’s a question I’m surprised I don’t get asked? I mean in the context of being a person with an advanced mathematics degree. I don’t get asked what’s the longest proof I’ve ever done. Either just reading to understand, or proving for myself. Maybe people are too intimidated by the idea of advanced mathematics to try asking such things. Maybe they’re afraid I’d bury them under a mountain of technical details. But I’d imagine musicians get asked what the hardest or the longest piece they’ve memorized is. I’m sure artists get asked what’s the painting (or sculpture, or whatnot) they’ve worked on the longest was.

It’s just as well nobody’s asked. I’m not sure what the longest proof I’ve done, or gone through, would even be. Some of it is because there’s an inherent arbitrariness to the concept of “a proof”. Proofs are arguments, and they’re almost always made up of many smaller pieces. The advantage of making these small pieces is that small proofs are usually easier to understand. We can then assemble the conclusions of many small proofs to make one large proof. But then how long was the large proof? Does it contain all the little proofs that go into it?

And, truth be told, I didn’t think to pay attention to how long any given proof was. If I had to guess I would think the longest proof I’d done, just learned, would be from a grad school course in ordinary differential equations. This is the way we study systems in which how things are changing depends on what things are now. These often match physical, dynamic, systems very well. I remember in the class spending several two-hour sessions trying to get through a major statement in a field called Kolmogorov-Arnold-Moser Theory. This is a major statement about dynamical systems being perturbed, given a little shove. And it describes what conditions make the little shove really change the way the whole system behaves.

What I’m getting to is that there appears to be a new world’s record-holder for the Longest Actually Completed Proof. It’s about a problem I never heard of before but that’s apparently been open since the 1980s. It’s known as the Boolean Pythagorean Triples problem. The MathsByAGirl blog has an essay about it, and gives some idea of its awesome size. It’s about 200 terabytes of text. As you might imagine, it’s a proof by exhaustion. That is, it divides up a problem into many separate cases, and tries out all the cases. That’s a legitimate approach. It tends to produce proofs that are long and easy to verify, at least at each particular case. They might not be insightful, that is, they might not suggest new stuff to do, but they work. (And I don’t know that this proof doesn’t suggest new stuff to do. I haven’t read it, for good reason. It’s well outside my specialty.)

But proofs can be even bigger. John Carlos Baez published a while back an essay, “Insanely Long Proofs”. And that’s awe-inspiring. Baez is able to provide theorems which we know to be true. You’ll be able to understand what they conclude, too. And in the logic system applicable to them, their proofs would be so long that the entire universe isn’t big enough just to write down the number of symbols needed to complete the proof. Let me say that again. It’s not that writing out the proof would take more than all the space in the universe. It’s that writing out how long the proof would be, written out would take more than all the space in the universe.

So you should ask, then how do we know it’s true? Baez explains.