Reading the Comics, June 11, 2016: Mostly Mathematics As A Signifier Edition


For this week’s roundup of mathematically themed comic strips I have a picture again! After a month or so. It’s great to see again. Also there’s several comics I could swear I’ve shown and featured before. But it’s really quite hot here and I don’t feel like going to the effort of looking. If I repeat myself, so I do. I bet you’ve forgotten the last time I did this Robbie and Bobby too.

Carol Lay’s Lay Lines for the 6th implicitly uses mathematics as an example of perfection. The idea of the straight line is in that territory shared by both mathematics and Platonic ideals. We can imagine a straight line and understand many properties of it even though it can’t be manifest in our real world. The Gods, allegedly, would be able to overcome that and offer perfect circles around imperfect lines. I suppose that’s one way to tell there’s a god involved. The strip also take a moment to riff on the ontological problem, although I don’t know if that’s part of Lay’s intent.

Jonathan Lemon’s Rabbits Against Magic for the 6th uses a bit of mathematics to represent having a theory. It’s true enough that mathematics serves this role in many sciences. We can often put a good explanation for phenomena in a set of equations. But that’s so if you have a good idea what quantities to measure, and how they affect one another. Lettuce’s equation just describes how long an arc within a circle is. It’s true, although I don’t think it rates the status of a theory; it just describes one thing we’d like to know in terms of another thing. And it’s all a setup for a π joke anyway.

Tiger: 'If I had four apples in this hand and four more in this hand, what would I have?' Punkinhead: 'Really, really big giant hands!'

Bud Blake’s Tiger for the 8th of June, 2016. Does this joke seem at all familiar?

Bud Blake’s Tiger for the 8th, as a King Features comic, broke my drought of having images to include with Reading the Comics posts! Celebrate! It’s also the one that made me think I was getting reruns in. But it’s more mysterious than that. The Tiger rerun (Blake died several years ago and all Tiger strips are reruns) for the 20th of April, 2015, is the same joke. I featured it in a Reading The Comics post back then. But it’s not the same strip. The art’s completely redrawn. I can’t fault Blake for having reused a setup-and-punchline. Every comic strip creator does this. Sometimes the cartoonist has improved the joke. (Berkeley Breathed did this several times over.) Sometimes the cartoonist probably just forgot it was done before. (There’s several Peanuts strips suggesting this.) I’m just delighted to catch someone at it.

'If I had six apples in one hand and three apples in the other and, what would I have?' 'Really big hands!'

Bud Blake’s Tiger for the 20th of April, 2015. A-ha!.

Ryan Pagelow’s Buni for the 8th uses a blackboard full of mathematics as signifier for explaining the Big Questions of life. And features the traditional little error spotted by someone else. The scribbles are gibberish altogether, but they don’t need to be (and in truth couldn’t be) meaningful. I will defend the backwards-capital-sigma in the upper left of the first panel, though. Sigmas are some of those letters that get pretty sloppy treatment. You get swept up in inspiration and penmanship just collapses. Other Greek letters take some shabby treatment too. And there was a stretch of about three years when I would’ve sworn there was a letter ‘ksee’, a sort of topheavy squiggle. It doesn’t exist, but it’s pretty convenient when you need one more easy Greek letter to use.

Jason Poland’s Robbie and Bobby for the 8th is the second strip that made me think there were reruns. I was right. It ran in September 2014, and I had it then.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 8th features the “scariest equation” in the universe. The board gives a good description of the quantities in the equation and the relationship makes superficial sense. But it does depend on an assumption I’m not sure about, but I will go with. Weinersmith’s argument supposes that a mis-sent text is equally likely to go to any of your contacts. I am not an experienced texter. But it seems to me that a mis-sent text is more likely to go to a contact you’d recently messaged, or one that’s close to the person you meant to contact. Suppose parents are among the people you text often, or whose contact information is stored where it’s easy to pick by accident. Then you likely send them more messages by accident than this expects. On the other hand, suppose you don’t text parents often or you store their information well away from your significant’s. Then the number of mis-sent messages given to them is lower. Without information about how you organize your contacts, we can’t say what’s a better estimate. So in ignorance we may suppose you mis-send texts to every one of your contacts equally often.

Samson’s Dark Side of the Horse for the 9th is the numerals-as-objects joke for this time around.

Dave Whamond’s Reality Check for the 9th uses word problems as the signifier for everything mathematics teachers want to know.

Mell Lazarus’s Momma rerun for the 10th uses a word problem to try to quantify love. Marylou decries the result as “differential calculus”, although it’s really just high school algebra. “Differential calculus” is the funnier term, must admit. Differential calculus refers, generally, to the study of how much one quantity depends on another. On average you can expect something to change if one or more of the variables that describe it change. For example, if you make a rectangle a little larger, its area gets larger. What’s the ratio between how much the area changes and how much the lengths of the rectangle change? If you make an angled corridor wider, then a longer straight object can be fit through the corner. How much longer an object can you bring through the corridor if you make the width a tiny bit bigger? And this also tells us where maximums and minimums are. At a maximum or minimum, a quantity doesn’t change appreciably as the variables that describe it change a little bit. So we can find maximums and minimums by the differential calculus.

Mark Anderson’s Andertoons finally gets in on the 11th. The numbers are looking good. I’m happy with it.

Yeah, so, it wasn’t really all that hot.

Advertisements