Reading the Comics, August 1, 2016: Kalends Edition

The last day of July and first day of August saw enough mathematically-themed comic strips to fill a standard-issue entry. The rest of the week wasn’t so well-stocked. But I’ll cover those comics on Tuesday if all goes well. This may be a silly plan, but it is a plan, and I will stick to that.

Johnny Hart’s Back To BC reprints the venerable and groundbreaking comic strip from its origins. On the 31st of July it reprinted a strip from February 1959 in which Peter discovers mathematics. The work’s elaborate, much more than we would use to solve the problem today. But it’s always like that. Newly-discovered mathematics is much like any new invention or innovation, a rickety set of things that just barely work. With time we learn better how the idea should be developed. And we become comfortable with the cultural assumptions going into the work. So we get more streamlined, faster, easier-to-use mathematics in time.

The early invention of mathematics reappears the 1st of August, in a strip from earlier in February 1959. In this case it’s the sort of word problem confusion strip that any comic with a student could do. That’s a bit disappointing but Hart had much less space than he’d have for the Sunday strip above. One must do what one can.

Mac King and Bill King’s Magic in a Minute for the 31st maybe isn’t really mathematics. I guess there’s something in the modular-arithmetic implied by it. But it depends on a neat coincidence. Follow the directions in the comic about picking a number from one to twelve and counting out the letters in the word for that number. And then the letters in the word for the number you’re pointing to, and then once again. It turns out this leads to the same number. I’d never seen this before and it’s neat that it does.

Rick Detorie’s One Big Happy rerun for the 31st features Ruthie teaching, as she will. She mentions offhand the “friendlier numbers”. By this she undoubtedly means the numbers that are attractive in some way, like being nice to draw. There are “friendly numbers”, though, as number theorists see things. These are sets of numbers. For each number in this set you get the same index if you add together all its divisors (including 1 and the original number) and divide it by the original number. For example, the divisors of six are 1, 2, 3, and 6. Add that together and you get 12; divide that by the original 6 and you get 2. The divisors of 28 are 1, 2, 4, 7, 14, and 28. Add that pile of numbers together and you get 56; divide that by the original 28 and you get 2. So 6 and 28 are friendly numbers, each the friend of the other.

As often happens with number theory there’s a lot of obvious things we don’t know. For example, we know that 1, 2, 3, 4, and 5 have no friends. But we do not know whether 10 has. Nor 14 nor 20. I do not know if it is proved whether there are infinitely many sets of friendly numbers. Nor do I know if it is proved whether there are infinitely many numbers without friends. Those last two sentences are about my ignorance, though, and don’t reflect what number theory people know. I’m open to hearing from people who know better.

There are also things called “amicable numbers”, which are easier to explain and to understand than “friendly numbers”. A pair of numbers are amicable if the sum of one number’s divisors is the other number. 220 and 284 are the smallest pair of amicable numbers. Fermat found that 17,296 and 18,416 were an amicable pair; Descartes found that 9,363,584 and 9,437,056 were. Both pairs were known to Arab mathematicians already. Amicable pairs are easy enough to produce. From the tenth century we’ve had Thâbit ibn Kurrah’s rule, which lets you generate sets of numbers. Ruthie wasn’t thinking of any of this, though, and was more thinking how much fun it is to write a 7.

Terry Border’s Bent Objects for the 1st just missed the anniversary of John Venn’s birthday and all the joke Venn Diagrams that were going around at least if your social media universe looks anything like mine.

Jon Rosenberg’s Scenes from a Multiverse for the 1st is set in “Mathpinion City”, in the “Numerically Flexible Zones”. And I appreciate it’s a joke about the politicization of science. But science and mathematics are human activities. They are culturally dependent. And especially at the dawn of a new field of study there will be long and bitter disputes about what basic terms should mean. It’s absurd for us to think that the question of whether 1 + 1 should equal 2 or 3 could even arise.

But we think that because we have absorbed ideas about what we mean by ‘1’, ‘2’, ‘3’, ‘plus’, and ‘equals’ that settle the question. There was, if I understand my mathematics history right — and I’m not happy with my reading on this — a period in which it was debated whether negative numbers should be considered as less than or greater than the positive numbers. Absurd? Thermodynamics allows for the existence of negative temperatures, and those represent extremely high-energy states, things that are hotter than positive temperatures. A thing may get hotter, from 1 Kelvin to 4 Kelvin to a million Kelvin to infinitely many Kelvin to -1000 Kelvin to -6 Kelvin. If there are intuition-defying things to consider about “negative six” then we should at least be open to the proposition that the universal truths of mathematics are understood by subjective processes.


Author: Joseph Nebus

I was born 198 years to the day after Johnny Appleseed. The differences between us do not end there.

Please Write Something Good

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s