Some Thermomathematics Reading


I have been writing, albeit more slowly, this month. I’m also reading, also more slowly than usual. Here’s some things that caught my attention.

One is from Elke Stangl, of the Elkemental blog. “Re-Visiting Carnot’s Theorem” is about one of the centerpieces of thermodynamics. It’s about how much work you can possibly get out of an engine, and how much must be lost no matter how good your engineering is. Thermodynamics is the secret spine of modern physics. It was born of supremely practical problems, many of them related to railroads or factories. And it teaches how much solid information can be drawn about a system if we know nothing about the components of the system. Stangl also brings ASCII art back from its Usenet and Twitter homes. There’s just stuff that is best done as a text picture.

Meanwhile on the CarnotCycle blog Peter Mandel writes on “Le Châtelier’s principle”. This is related to the question of how temperatures affect chemical reactions: how fast they will be, how completely they’ll use the reagents. How a system that’s reached equilibrium will react to something that unsettles the equilibrium. We call that a perturbation. Mandel reviews the history of the principle, which hasn’t always been well-regarded, and explores why it might have gone under-appreciated for decades.

And lastly MathsByAGirl has published a couple of essays on spirals. Who doesn’t like them? Three-dimensional spirals, that is, helixes, have some obvious things to talk about. A big one is that there’s such a thing as handedness. The mirror image of a coil is not the same thing as the coil flipped around. This handedness has analogues and implications through chemistry and biology. Two-dimensional spirals, by contrast, don’t have handedness like that. But we’ve groups types of spirals into many different sorts, each with their own beauty. They’re worth looking at.

Advertisements