And now I can finish off last week’s comics. It was a busy week. The first few days of this week have been pretty busy too. Meanwhile, Dave Kingsbury has recently read a biography of Lewis Carroll, and been inspired to form a haiku/tanka project. You might enjoy.

Susan Camilleri Konar is a new cartoonist for the **Six Chix** collective. Her first strip to get mentioned around these parts is from the 5th. It’s a casual mention of the Fibonacci sequence, which is one of the few sequences that a normal audience would recognize as something going on forever. And yes, I noticed the spiral in the background. That’s one of the common visual representations of the Fibonacci sequence: it starts from the center. The rectangles inside have dimensions 1 by 2, then 2 by 3, then 3 by 5, then 5 by 8, and so on; the spiral connects vertices of these rectangles. It’s an attractive spiral and you can derive the overrated Golden Ratio from the dimensions of larger rectangles. This doesn’t make the Golden Ratio important or anything, but it is there.

Ryan North’s **Dinosaur Comics** for the 6th is part of a story about T-Rex looking for certain truth. Mathematics could hardly avoid coming up. And it does offer what look like universal truths: given the way deductive logic works, and some starting axioms, various things must follow. “1 + 1 = 2” is among them. But there are limits to how much that tells us. If we accept the rules of Monopoly, then owning four railroads means the rent for landing on one is a game-useful $200. But if nobody around you cares about Monopoly, so what? And so it is with mathematics. Utahraptor and Dromiceiomimus point out that the mathematics we know is built on premises we have selected because we find them interesting or useful. We can’t know that the mathematics we’ve deduced has any particular relevance to reality. Indeed, it’s worse than North points out: How do we know whether an argument is valid? Because *we believe* that its conclusions follow from its premises according to our rules of deduction. We rely on our possibly deceptive senses to tell us what the argument even *was*. We rely on a mind possibly upset by an undigested bit of beef, a crumb of cheese, or a fragment of an underdone potato to tell us the rules are satisfied. Mathematics seems to offer us absolute truths, but it’s hard to see how we can get there.

Rick Stromoskis **Soup to Nutz** for the 6th has a mathematics cameo in a student-resisting-class-questions problem. But the teacher’s question is related to the figure that made my first fame around these parts.

Mark Anderson’s **Andertoons** for the 7th is the long-awaited Andertoon for last week. It is hard getting education in through all the overhead.

Bill Watterson’s **Calvin and Hobbes** rerun for the 7th is a basic joke about Calvin’s lousy student work. Fun enough. Calvin does show off one of those important skills mathematicians learn, though. He does do a sanity check. He may not know what 12 + 7 and 3 + 4 are, but he *does* notice that 12 + 7 has to be something larger than 3 + 4. That’s a starting point. It’s often helpful before starting work on a problem to have some idea of what you think the answer should be.

Thank you for the mention. Good advice about starting work on a problem knowing roughly what the answer is … though my post demonstrated the opposite!

LikeLike

Quite welcome. And, well, usually having an idea what answer you expect helps. Sometimes it misfires, I admit. But all rules of thumb sometimes misfire. If your expectation misfires it’s probably because you expect the answer to be something that’s not just wrong, but wrong in a significant way. That is, not wrong because you’re thinking 12 when it should be 14, but rather wrong because you’re thinking 12 when you should be thinking of doughnut shapes. But figuring that out is another big learning experience.

LikeLiked by 1 person