## The End 2016 Mathematics A To Z: Cantor’s Middle Third

Today’s term is a request, the first of this series. It comes from HowardAt58, head of the Saving School Math blog. There are many letters not yet claimed; if you have a term you’d like to see my write about please head over to the “Any Requests?” page and pick a letter. Please not one I figure to get to in the next day or two.

## Cantor’s Middle Third.

I think one could make a defensible history of mathematics by describing it as a series of ridiculous things that get discovered. And then, by thinking about these ridiculous things long enough, mathematicians come to accept them. Even rely on them. Sometime later the public even comes to accept them. I don’t mean to say getting people to accept ridiculous things is the point of mathematics. But there is a pattern which happens.

Consider. People doing mathematics came to see how a number could be detached from a count or a measure of things. That we can do work on, say, “three” whether it’s three people, three kilograms, or three square meters. We’re so used to this it’s only when we try teaching mathematics to the young we realize it isn’t obvious.

Or consider that we can have, rather than a whole number of things, a fraction. Some part of a thing, as if you could have one-half pieces of chalk or two-thirds a fruit. Counting is relatively obvious; fractions are something novel but important.

We have “zero”; somehow, the lack of something is still a number, the way two or five or one-half might be. For that matter, “one” is a number. How can something that isn’t numerous be a number? We’re used to it anyway. We can have not just fraction and one and zero but irrational numbers, ones that can’t be represented as a fraction. We have negative numbers, somehow a lack of whatever we were counting so great that we might add some of what we were counting to the pile and still have nothing.

That takes us up to about eight hundred years ago or something like that. The public’s gotten to accept all this as recently as maybe three hundred years ago. They’ve still got doubts. I don’t blame folks. Complex numbers mathematicians like; the public’s still getting used to the idea, but at least they’ve heard of them.

Cantor’s Middle Third is part of the current edge. It’s something mathematicians are aware of and that defies sense at least. But we’ve come to accept it. The public, well, they don’t know about it. Maybe some do; it turns up in pop mathematics books that like sharing the strangeness of infinities. Few people read them. Sometimes it feels like all those who do go online to tell mathematicians they’re crazy. It comes to us, as you might guess from the name, from Georg Cantor. Cantor established the modern mathematical concept of how to study infinitely large sets in the late 19th century. And he was repeatedly hospitalized for depression. It’s cruel to write all that off as “and he was crazy”. His work’s withstood a hundred and thirty-five years of extremely smart people looking at it skeptically.

The Middle Third starts out easily enough. Take a line segment. Then chop it into three equal pieces and throw away the middle third. You see where the name comes from. What do you have left? Some of the original line. Two-thirds of the original line length. A big gap in the middle.

Now take the two line segments. Chop each of them into three equal pieces. Throw away the middle thirds of the two pieces. Now we’re left with four chunks of line and four-ninths of the original length. One big and two little gaps in the middle.

Now take the four little line segments. Chop each of them into three equal pieces. Throw away the middle thirds of the four pieces. We’re left with eight chunks of line, about eight-twenty-sevenths of the original length. Lots of little gaps. Keep doing this, chopping up line segments and throwing away middle pieces. Never stop. Well, pretend you never stop and imagine what’s left.

What’s left is deeply weird. What’s left has no length, no measure. That’s easy enough to prove. But we haven’t thrown everything away. There are bits of the original line segment left over. The left endpoint of the original line is left behind. So is the right endpoint of the original line. The endpoints of the line segments after the first time we chopped out a third? Those are left behind. The endpoints of the line segments after chopping out a third the second time, the third time? Those have to be in the set. We have a dust, isolated little spots of the original line, none of them combining together to cover any length. And there are infinitely many of these isolated dots.

We’ve seen that before. At least we have if we’ve read anything about the Cantor Diagonal Argument. You can find that among the first ten posts of every mathematics blog. (Not this one. I was saving the subject until I had something good to say about it. Then I realized many bloggers have covered it better than I could.) Part of it is pondering how there can be a set of infinitely many things that don’t cover any length. The whole numbers are such a set and it seems reasonable they don’t cover any length. The rational numbers, though, are also an infinitely-large set that doesn’t cover any length. And there’s exactly as many rational numbers as there are whole numbers. This is unsettling but if you’re the sort of person who reads about infinities you come to accept it. Or you get into arguments with mathematicians online and never know you’ve lost.

Here’s where things get weird. How many bits of dust are there in this middle third set? It seems like it should be countable, the same size as the whole numbers. After all, we pick up some of these points every time we throw away a middle third. So we double the number of points left behind every time we throw away a middle third. That’s countable, right?

It’s not. We can prove it. The proof looks uncannily like that of the Cantor Diagonal Argument. That’s the one that proves there are more real numbers than there are whole numbers. There are points in this leftover set that were not endpoints of any of these middle-third excerpts. This dust has more points in it than there are rational numbers, but it covers no length.

(I don’t know if the dust has the same size as the real numbers. I suspect it’s unproved whether it has or hasn’t, because otherwise I’d surely be able to find the answer easily.)

It’s got other neat properties. It’s a fractal, which is why someone might have heard of it, back in the Great Fractal Land Rush of the 80s and 90s. Look closely at part of this set and it looks like the original set, with bits of dust edging gaps of bigger and smaller sizes. It’s got a fractal dimension, or “Hausdorff dimension” in the lingo, that’s the logarithm of two divided by the logarithm of three. That’s a number actually known to be transcendental, which is reassuring. Nearly all numbers are transcendental, but we only know a few examples of them.

HowardAt58 asked me about the Middle Third set, and that’s how I’ve referred to it here. It’s more often called the “Cantor set” or “Cantor comb”. The “comb” makes sense because if you draw successive middle-thirds-thrown-away, one after the other, you get something that looks kind of like a hair comb, if you squint.

You can build sets like this that aren’t based around thirds. You can, for example, develop one by cutting lines into five chunks and throw away the second and fourth. You get results that are similar, and similarly heady, but different. They’re all astounding. They’re all hard to believe in yet. They may get to be stuff we just accept as part of how mathematics works.