Today’s A To Z entry is a change of pace. It dives deeper into analysis than this round has been. The term comes from Mr Wu, of the Singapore Maths Tuition blog, whom I thank for the request.

# Morse Theory.

An old joke, as most of my academia-related ones are. The young scholar says to his teacher how amazing it was in the old days, when people were foolish, and thought the Sun and the Stars moved around the Earth. How fortunate we are to know better. The elder says, ah yes, but what would it look like if it were the other way around?

There are many things to ponder packed into that joke. For one, the elder scholar’s awareness that our ancestors were no less smart or perceptive or clever than we are. For another, the awareness that there is a problem. We want to know about the universe. But we can only *know* what we perceive now, where we are at this moment. Even a note we’ve written in the past, or a message from a trusted friend, we can’t take uncritically. What we know is that we perceive this information in this way, now. When we pay attention to our friends in the philosophy department we learn that knowledge is even harder than we imagine. But I’ll stop there. The problem is hard enough already.

We can put it in a mathematical form, one that seems immune to many of the worst problems of knowledge. In this form it looks something like this: if what can we know about the universe, if all we really know is what things in that universe are doing near us? The things that we look at are functions. The universe we’re hoping to understand is the domain of the functions. One filter we use to see the universe is Morse Theory.

We don’t look at every possible function. Functions are too varied and weird for that. We look at functions whose range is the real numbers. And they must be smooth. This is a term of art. It means the function has derivatives. It has to be continuous. It can’t have sharp corners. And it has to have lots of derivatives. The first derivative of a smooth function has to also be continuous, and has to also lack corners. And the derivative of that first derivative has to be continuous, and to lack corners. And the derivative of that derivative has to be the same. A smooth function can can differentiate over and over again, infinitely many times. None of those derivatives can have corners or jumps or missing patches or anything. This is what makes it smooth.

Most functions are not smooth, in much the same way most shapes are not circles. That’s all right. There are many smooth functions anyway, and they describe things we find interesting. Or we think they’re interesting, anyway. Smooth functions are easy for us to work with, and to know things about. There’s plenty of smooth functions. If you’re interested in something else there’s probably a smooth function that’s close enough for practical use.

Morse Theory builds on the “critical points” of these smooth functions. A critical point, in this context, is one where the derivative is zero. Derivatives being zero usually signal something interesting going on. Often they show where the function changes behavior. In freshman calculus they signal where a function changes from increasing to decreasing, so the critical point is a maximum. In physics they show where a moving body no longer has an acceleration, so the critical point is an equilibrium. Or where a system changes from one kind of behavior to another. And here — well, many things can happen.

So take a smooth function. And take a critical point that it’s got. (And, erg. Technical point. The derivative of your smooth function, at that critical point, shouldn’t be having its own critical point going on at the same spot. That makes stuff more complicated.) It’s possible to approximate your smooth function near that critical point with, of course, a polynomial. It’s always polynomials. The shape of these polynomials gives you an index for these points. And that can tell you something about the shape of the domain you’re on.

At least, it tells you something about what the shape is where you are. The universal model for this — based on skimming texts and papers and popularizations of this — is of a torus standing vertically. Like a doughnut that hasn’t tipped over, or like a tire on a car that’s working as normal. I suspect this is the best shape to use for teaching, as anyone can understand it while it still shows the different behaviors. I won’t resist.

Imagine slicing this tire horizontally. Slice it close to the bottom, below the central hole, and the part that drops down is a disc. At least, it could be flattened out tolerably well to a disc.

Slice it somewhere that intersects the hole, though, and you have a different shape. You can’t squash that down to a disc. You have a noodle shape. A cylinder at least. That’s different from what you got the first slice.

Slice the tire somewhere higher. Somewhere above the central hole, and you have … well, it’s still a tire. It’s got a hole in it, but you could imagine patching it and driving on. There’s another different shape that we’ve gotten from this.

Imagine we were confined to the surface of the tire, but did not know what surface it was. That we start at the lowest point on the tire and ascend it. From the way the smooth functions around us change we can tell how the surface we’re on has changed. We can see its change from “basically a disc” to “basically a noodle” to “basically a doughnut”. We could work out what the surface we’re on has to be, thanks to how these smooth functions around us change behavior.

Occasionally we mathematical-physics types want to act as though we’re not afraid of our friends in the philosophy department. So we deploy the second thing we know about Immanuel Kant. He observed that knowing the force of gravity falls off as the square of the distance between two things implies that the things should exist in a three-dimensional space. (Source: I dunno, I never read his paper or book or whatever and dunno I ever heard anyone say they did.) It’s a good observation. Geometry tells us what physics can happen, but what physics does happen tells us what geometry they happen in. And it tells the philosophy department that we’ve heard of Immanuel Kant. This impresses them greatly, we tell ourselves.

Morse Theory is a manifestation of how observable physics teaches us the geometry they happen on. And in an urgent way, too. Some of Edward Witten’s pioneering work in superstring theory was in bringing Morse Theory to quantum field theory. He showed a set of problems called the Morse Inequalities gave us insight into supersymmetric quantum mechanics. The link between physics and doughnut-shapes may seem vague. This is because you’re not remembering that mathematical physics sees “stuff happening” as curves drawn on shapes which represent the kind of problem you’re interested in. Learning what the shapes representing the problem look like *is* solving the problem.

If you’re interested in the substance of this, the universally-agreed reference is J Milnor’s 1963 text **Morse Theory**. I confess it’s hard going to read, because it’s a symbols-heavy textbook written before the existence of LaTeX. Each page reminds one why typesetters used to get hazard pay, and not enough of it.

My favourite functions: “Most functions are not smooth, in much the same way most shapes are not circles.”

LikeLiked by 1 person

Thank you. Sometimes I think while writing that I’ve really hit something good, and that sentence was the one that gave me that feeling that week.

LikeLiked by 1 person

Typo: my favourite statement (not functions)

LikeLiked by 1 person

Reblogged this on Singapore Maths Tuition.

LikeLike

I totally like: “Occasionally we mathematical-physics types want to act as though we’re not afraid of our friends in the philosophy department.” :-)

It’s an amazing A-Z – I am always late and in catch-up mode, but I am enjoying every post!

LikeLike

Thank you kindly. And never worry about being late; you can see how scrambled my schedule has been lately. I’m hoping to get down to Inbox 100 sometime this weekend, if all goes well.

LikeLiked by 1 person