# Reading the Comics, August 24, 2018: Delayed But Eventually There Edition

Now I’ve finally had the time to deal with the rest of last week’s comics. I’ve rarely been so glad that Comic Strip Master Command has taken it easy on me for this week.

Tom Toles’s Randolph Itch, 2am for the 20th is about a common daydream, that of soap bubbles of weird shapes. There’s fun mathematics to do with soap bubbles. Most of these fall into the “calculus of variations”, which is good at finding minimums and maximums. The minimum here is a surface with zero mean curvature that satisfies particular boundaries. In soap bubble problems the boundaries have a convenient physical interpretation. They’re the wire frames you dunk into soap film, and pull out again, to see what happens. There’s less that’s proven about soap bubbles than you might think. For example: we know that two bubbles of the same size will join on a flat common surface. Do three bubbles? They seem to, when you try blowing bubbles and fitting them together. But this falls short of mathematical rigor.

Parker and Hart’s Wizard of Id Classics for the 21st is a joke about the ignorance of students. Of course they don’t know basic arithmetic. Curious thing about the strip is that you can read it as an indictment of the school system, failing to help students learn basic stuff. Or you can read it as an indictment of students, refusing the hard work of learning while demanding a place in politics. Given the 1968 publication date I have a suspicion which was more likely intended. But it’s hard to tell; 1968 was a long time ago. And sometimes it’s just so easy to crack an insult there’s no guessing what it’s supposed to mean.

Gene Mora’s Graffiti for the 22nd mentions what’s probably the most famous equation after that thing with two times two in it. It does cry out something which seems true, that $E = mc^2$ was there before Albert Einstein noticed it. It does get at one of those questions that, I say without knowledge, is probably less core to philosophers of mathematics than the non-expert would think. But are mathematical truths discovered or invented? There seems to be a good argument that mathematical truths are discovered. If something follows by deductive logic from the axioms of the field, and the assumptions that go into a question, then … what’s there to invent? Anyone following the same deductive rules, and using the same axioms and assumptions, would agree on the thing discovered. Invention seems like something that reflects an inventor.

But it’s hard to shake the feeling that there is invention going on. Anyone developing new mathematics decides what things seem like useful axioms. She decides that some bundle of properties is interesting enough to have a name. She decides that some consequences of these properties are so interesting as to be named theorems. Maybe even the Fundamental Theorem of the field. And there was the decision that this is a field with a question interesting enough to study. I’m not convinced that isn’t invention.

Mark Anderson’s Andertoons for the 23rd sees Wavehead — waaait a minute. That’s not Wavehead! This throws everything off. Well, it’s using mathematics as the subject that Not-Wavehead is trying to avoid. And it’s not using arithmetic as the subject easiest to draw on the board. It needs some kind of ascending progression to make waiting for some threshold make sense. Numbers rising that way makes sense.

Scott Hilburn’s The Argyle Sweater for the 24th is the Roman numerals joke for this week. Oh, and apparently it’s a rerun; I hadn’t noticed before that the strip was rerunning. This isn’t a complaint. Cartoonists need vacations too.

That birds will fly in V-formation has long captured people’s imaginations. We’re pretty confident we know why they do it. The wake of one bird’s flight can make it easier for another bird to stay aloft. This is especially good for migrating birds. The fluid-dynamic calculations of this are hard to do, but any fluid-dynamic calculations are hard to do. Verifying the work was also hard, but could be done. I found and promptly lost an article about how heartbeat monitors were attached to a particular flock of birds whose migration path was well-known, so the sensors could be checked and data from them gathered several times over. (Birds take turns as the lead bird, the one that gets no lift from anyone else’s efforts.)

So far as I’m aware there’s still some mystery as to how they do it. That is, how they know to form this V-formation. A particularly promising line of study in the 80s and 90s was to look at these as self-organizing structures. This would have each bird just trying to pay attention to what made sense for itself, where to fly relative to its nearest-neighbor birds. And these simple rules created, when applied to the whole flock, that V pattern. I do not know whether this reflects current thinking about bird formations. I do know that the search for simple rules that produce rich, complicated patterns goes on. Centuries of mathematics, physics, and to an extent chemistry have primed us to expect that everything is the well-developed result of simple components.

Dave Whamond’s Reality Check for the 24th is apparently an answer to The Wandering Melon‘s comic earlier this month. So now we know what kind of lead time Dave Whamond is working on.

My next, and past, Reading the Comics posts are available at this link. Other essays with Randolph Itch, 2 a.m., are at this link. Essays that mention The Wizard of Id, classic or modern, are at this link. Essays mentioning Graffiti are at this link. Other appearances by Andertoons are at this link, or just read about half of all Reading the Comics posts. The Argyle Sweater is mentioned in these essays. And other essays with Reality Check are at this link. And what the heck; here’s other essays with The Wandering Melon in them.