The first two comics for this essay have titles of the form Name’s Thing, so, that’s why this edition title. That’s good enough, isn’t it? And besides this series there was a **Perry Bible Fellowship** which at least depicted mathematical symbols. It’s a rerun, though, even among those shown on GoComics.com. It was rerun recently enough that I featured it around here back in June. It’s a bit risque. But the strip was rerun the 12th. Maybe I also need to drop Perry Bible Fellowship from the roster of comics I read for this.

On to the comics I haven’t dropped.

Tony Buino and Gary Markstein’s **Daddy’s Home** for the 11th tries using specific examples to teach mathematics. There’s strangeness to arithmetic. It’s about these abstract things like “thirty” and “addition” and such. But these things match very well the behaviors of discrete objects, ones that don’t blend together or shatter by themselves. So we can use the intuition we have for specific things to get comfortable working with the abstract. This doesn’t stop, either. Mathematicians like to work on general, abstract questions; they let us answer big swaths of questions all at once. But working out a specific case is usually easier, both to prove and to understand. I don’t know what’s the most advanced mathematics that could be usefully practiced by thinking about cupcakes. Probably something in group theory, in studying the rotations of objects that are perfectly, or nearly, rotationally symmetric.

John Zakour and Scott Roberts’s **Maria’s Day** for the 11th is a follow-up to a strip featured last week. Maria’s been getting help on her mathematics from one of her closet monsters. And includes the usual joke about Common Core being such a horrible thing that it must come from monsters. I don’t know whether in the comic strip’s universe the monster is supposed to be imaginary. (Usually, in a comic strip, the question of whether a character is imaginary-or-real is pointless. I think Richard Thompson’s **Cul de Sac** is the only one to have done something good with it.) But if the closet monster is in Maria’s imagination, it’s quite in line for her to think that teaching comes from some malevolent and inscrutable force.

Olivia Jaimes’s **Nancy** for the 12th features one of the first interesting mathematics questions you do in physics. This is often done with calculus. Not much, but more than Nancy and Esther could realistically have. It could be worked out experimentally, and that’s likely what the teacher was hoping for. Calculus isn’t really necessary, although it does show skeptical students there’s some value in all this d-dx business they’ve been working through. You can find the same answers by dimensional analysis, which is less intimidating. But you’d still need to know some trigonometry functions. That’s beyond whatever Nancy’s grade level is too. In any case, Nancy is an expert at identifying unstated assumptions, and working out loopholes in them. I’m curious whether the teacher would respect Nancy’s skill here. (The way the writing’s been going, I think she would.)

Francesco Marciuliano and Jim Keefe’s **Sally Forth** for the 13th is about new-friend Jenny trying to work out her relationship with Hilary-Faye-and-Nona. It’s a good bit of character work, but that is outside my subject here. In the last panel Nona admits she’s been talking, or at least thinking about τ versus π. This references a minor nerd-squabble that’s been going on a couple years. π is an incredibly well-known, useful number. It’s the only transcendental number you can expect a normal person to have ever heard of. Humans noticed it, historically, because the length of the circumference of a circle is π times the length of its diameter. Going between “the distance across” and “the distance around” turns out to be useful.

The thing is, many mathematical and physics formulas find it more convenient to write things in terms of the radius of a circle or sphere. And this makes 2π show up in formulas. A *lot*. Even in things that don’t obviously have circles in them. For example, the Gaussian distribution, which describes how much a sample looks like the population it’s sampled from, has 2π in it. So, the τ argument does, why write out 2π all these places? Why not decide that *that’s* the useful number to think about, give it the catchy name τ, and use that instead? All the interesting questions about π have exact, obvious parallel questions about τ. Any answers about one give us answers about the other. So why not make this switch and then … pocket the savings in having shorter formulas?

You may sense in me a certain skepticism. I don’t see where changing over gets us anything worth the bother. But there are fashions in mathematics as with everything else. Perhaps τ has some ability to clarify things in ways we’ll come to better appreciate.

This and my other Reading the Comics posts are this link. Essays inspired by **Daddy’s Home** are at this link. Other essays that mention **Maria’s Day** discussions should be at this link. Essays with a mention of **Nancy**, old and new, are at this link. And essays in which **Sally Forth** gets discussed will be at this link. It’s a new tag today, which does surprise me.