Reading the Comics, March 23, 2019: March 23, 2019 Edition

I didn’t cover quite all of last week’s mathematics comics with Sunday’s essay. There were a handful that all ran on Saturday. And, as has become tradition, I’ll also list a couple that didn’t rate a couple paragraphs.

Rick Kirkman and Jerry Scott’s Baby Blues for the 23rd has a neat variation on story problems. Zoe’s given the assignment to make her own. I don’t remember getting this as homework, in elementary school, but it’s hard to see why I wouldn’t. It’s a great exercise: not just set up an arithmetic problem to solve, but a reason one would want to solve it.

Composing problems is a challenge. It’s a skill, and you might be surprised that when I was in grad school we didn’t get much training in it. We were just taken to be naturally aware of how to identify a skill one wanted to test, and to design a question that would mostly test that skill, and to write it out in a question that challenged students to identify what they were to do and how to do it, and why they might want to do it. But as a grad student I wasn’t being prepared to teach elementary school students, just undergraduates.

Mastroianni and Hart’s B.C. for the 23rd is a joke in the funny-definition category, this for “chaos theory”. Chaos theory formed as a mathematical field in the 60s and 70s, and it got popular alongside the fractal boom in the 80s. The field can be traced back to the 1890s, though, which is astounding. There was no way in the 1890s to do the millions of calculations needed to visualize any good chaos-theory problem. They had to develop results entirely by thinking.

Wiley’s definition is fine enough about certain systems being unpredictable. Wiley calls them “advanced”, although they don’t need to be that advanced. A compound pendulum — a solid rod that swings on the end of another swinging rod — can be chaotic. You can call that “advanced” if you want but then people are going to ask if you’ve had your mind blown by this post-singularity invention, the “screw”.

What makes for chaos is not randomness. Anyone knows the random is unpredictable in detail. That’s no insight. What’s exciting is when something’s unpredictable but deterministic. Here it’s useful to think of continental divides. These are the imaginary curves which mark the difference in where water runs. Pour a cup of water on one side of the line, and if it doesn’t evaporate, it eventually flows to the Pacific Ocean. Pour the cup of water on the other side, it eventually flows to the Atlantic Ocean. These divides are often wriggly things. Water may mostly flow downhill, but it has to go around a lot of hills.

So pour the water on that line. Where does it go? There’s no unpredictability in it. The water on one side of the line goes to one ocean, the water on the other side, to the other ocean. But where is the boundary? And that can be so wriggly, so crumpled up on itself, so twisted, that there’s no meaningfully saying. There’s just this zone where the Pacific Basin and the Atlantic Basin merge into one another. Any drop of water, however tiny, dropped in this zone lands on both sides. And that is chaos.

Neatly for my purposes there’s even a mountain at a great example of this boundary. Triple Divide Peak, in Montana, rests on the divides between the Atlantic and the Pacific basins, and also on the divide between the Atlantic and the Arctic oceans. (If one interprets the Hudson Bay as connecting to the Arctic rather than the Atlantic Ocean, anyway. If one takes Hudson Bay to be on the Atlantic Ocean, then Snow Dome, Alberta/British Columbia, is the triple point.) There’s a spot on this mountain (or the other one) where a spilled cup of water could go to any of three oceans.

John Graziano’s Ripley’s Believe It Or Not for the 23rd mentions one of those beloved bits of mathematics trivia, the birthday problem. That’s finding the probability that no two people in a group of some particular size will share a birthday. Or, equivalently, the probability that at least two people share some birthday. That’s not a specific day, mind you, just that some two people share a birthday. The version that usually draws attention is the relatively low number of people needed to get a 50% chance there’s some birthday pair. I haven’t seen the probability of 70 people having at least one birthday pair before. 99.9 percent seems plausible enough.

The birthday problem usually gets calculated something like this: Grant that one person has a birthday. That’s one day out of either 365 or 366, depending on whether we consider leap days. Consider a second person. There are 364 out of 365 chances that this person’s birthday is not the same as the first person’s. (Or 365 out of 366 chances. Doesn’t make a real difference.) Consider a third person. There are 363 out of 365 chances that this person’s birthday is going to be neither the first nor the second person’s. So the chance that all three have different birthdays is $\frac{364}{365} \cdot \frac{363}{365}$. Consider the fourth person. That person has 362 out of 365 chances to have a birthday none of the first three have claimed. So the chance that all four have different birthdays is $\frac{364}{365} \cdot \frac{363}{365} \cdot \frac{362}{365}$. And so on. The chance that at least two people share a birthday is 1 minus the chance that no two people share a birthday.

As always happens there are some things being assumed here. Whether these probability calculations are right depends on those assumptions. The first assumption being made is independence: that no one person’s birthday affects when another person’s is likely to be. Obvious, you say? What if we have twins in the room? What if we’re talking about the birthday problem at a convention of twins and triplets? Or people who enjoyed the minor renown of being their city’s First Babies of the Year? (If you ever don’t like the result of a probability question, ask about the independence of events. Mathematicians like to assume independence, because it makes a lot of work easier. But assuming isn’t the same thing as having it.)

The second assumption is that birthdates are uniformly distributed. That is, that a person picked from a room is no more likely to be born the 13th of February than they are the 24th of September. And that is not quite so. September births are (in the United States) slightly more likely than other months, for example, which suggests certain activities going on around New Year’s. Across all months (again in the United States) birthdates of the 13th are slightly less likely than other days of the month. I imagine this has to be accounted for by people who are able to select a due date by inducing delivery. (Again if you need to attack a probability question you don’t like, ask about the uniformity of whatever random thing is in place. Mathematicians like to assume uniform randomness, because it akes a lot of work easier. But assuming it isn’t the same as proving it.)

Do these differences mess up the birthday problem results? Probably not that much. We are talking about slight variations from uniform distribution. But I’ll be watching Ripley’s to see if it says anything about births being more common in September, or less common on 13ths.

And now the comics I didn’t find worth discussing. They’re all reruns, it happens. Morrie Turner’s Wee Pals rerun for the 20th just mentions mathematics class. That could be any class that has tests coming up, though. Percy Crosby’s Skippy for the 21st is not quite the anthropomorphic numerals jokes for the week. It’s getting around that territory, though, as Skippy claims to have the manifestation of a zero. Bill Rechin’s Crock for the 22nd is a “pick any number” joke. I discussed as much as I could think of about this when it last appeared, in May of 2018. Also I’m surprised that Crock is rerunning strips that quickly now. It has, in principle, decades of strips to draw from.

And that finishes my mathematical comics review for last week. I’ll start posting essays about next week’s comics here, most likely on Sunday, when I’m ready.