So a couple days ago I was chatting with a mathematician friend. He mentioned how he was struggling with the Ricci Tensor. Not the definition, not exactly, but its *point*. What the Ricci Tensor was for, and why it was a useful thing. He wished he knew of a pop mathematics essay about the thing. And this brought, slowly at first, to my mind that I knew of one. I wrote such a pop-mathematics essay about the Ricci Tensor, as part of my 2017 A To Z sequence. In it, I spend several paragraphs admitting that I’m not sure I understand what the Ricci tensor is for, and why it’s a useful thing.

Daniel Beyer’s **Long Story Short** for the 11th mentions some physics hypotheses. These are ideas about how the universe might be constructed. Like many such cosmological thoughts they blend into geometry. The no-boundary proposal, also known as the Hartle-Hawking state (for James Hartle and Stephen Hawking), is a hypothesis about the … I want to write “the start of time”. But I am not confident that this doesn’t beg the question. Well, we think we know what we mean by “the start of the universe”. A natural question in mathematical physics is, what was the starting condition? At the first moment that there was anything, what did it look like? And this becomes difficult to answer, difficult to even discuss, because part of the creation of the universe was the creation of spacetime. In this no-boundary proposal, the shape of spacetime at the creation of the universe is such that there just isn’t a “time” dimension at the “moment” of the Big Bang. The metaphor I see reprinted often about this is how there’s not a direction south of the south pole, even though south is otherwise a quite understandable concept on the rest of the Earth. (I agree with this proposal, but I feel like analogy isn’t quite tight enough.)

Still, there are mathematical concepts which seem akin to this. What is the start of the positive numbers, for example? Any positive number you might name has some smaller number we could have picked instead, until we fall out of the positive numbers altogether and into zero. For a mathematical physics concept there’s absolute zero, the coldest temperature there is. But there is no achieving absolute zero. The thermodynamical reasons behind this are hard to argue. (I’m not sure I could put them in a two-thousand-word essay, not the way I write.) It might be that the “moment of the Big Bang” is similarly inaccessible but, at least for the correct observer, incredibly close by.

The Weyl Curvature is a creation of differential geometry. So it is important in relativity, in describing the curve of spacetime. It describes several things that we can think we understand. One is the tidal forces on something moving along a geodesic. Moving along a geodesic is the general-relativity equivalent of moving in a straight line at a constant speed. Tidal forces are those things we remember reading about. They come from the Moon, sometimes the Sun, sometimes from a black hole a theoretical starship is falling into. Another way we are supposed to understand it is that it describes how gravitational waves move through empty space, space which has no other mass in it. I am not sure that this is that understandable, but it feels accessible.

The Weyl tensor describes how the shapes of things change under tidal forces, but it tracks no information about how the volume changes. The Ricci tensor, in contrast, tracks how the volume of a shape changes, but not the shape. Between the Ricci and the Weyl tensors we have all the information about how the shape of spacetime affects the things within it.

Ted Baum, writing to John Baez, offers a great piece of advice in understanding what the Weyl Tensor offers. Baum compares the subject to electricity and magnetism. If one knew all the electric charges and current distributions in space, one would … not quite know what the electromagnetic fields were. This is because there are electromagnetic waves, which exist independently of electric charges and currents. We need to account for those to have a full understanding of electromagnetic fields. So, similarly, the Weyl curvature gives us this for gravity. How is a gravitational field affected by waves, which exist and move independently of some source?

I am not sure that the Weyl Curvature is truly, as the comic strip proposes, a physics hypothesis “still on the table”. It’s certainly something still researched, but that’s because it offers answers to interesting questions. But that’s also surely close enough for the comic strip’s needs.

Dave Coverly’s **Speed Bump** for the 11th is a wordplay joke, and I have to admit its marginality. I can’t say it’s false for people who (presumably) don’t work much with coefficients to remember them after a long while. I don’t do much with French verb tenses, so I don’t remember anything about the pluperfect except that it existed. (I have a hazy impression that I liked it, but not an idea why. I think it was something in the auxiliary verb.) Still, this mention of coefficients nearly forms a comic strip synchronicity with Mike Thompson’s **Grand Avenue** for the 11th, in which a Math Joke allegedly has a mistaken coefficient as its punch line.

Mike Thompson’s **Grand Avenue** for the 12th is the one I’m taking as representative for the week, though. The premise has been that Gabby and Michael were sent to Math Camp. They do not want to go to Math Camp. They find mathematics to be a bewildering set of arbitrary and petty rules to accomplish things of no interest to them. From their experience, it’s hard to argue. The comic has, since I started paying attention to it, consistently had mathematics be a chore dropped on them. And not merely from teachers who want them to solve boring story problems. Their grandmother dumps workbooks on them, even in the middle of summer vacation, presenting it as a chore they must do. Most comic strips present mathematics as a thing students would rather not do, and that’s both true enough and a good starting point for jokes. But I don’t remember any that make mathematics look so tedious. Anyway, I highlight this one because of the Math Camp jokes it, and the coefficients mention above, are the most direct mention of some mathematical thing. The rest are along the lines of the strip from the 9th, asserting that the “Math Camp Activity Board” spelled the last word wrong. The joke’s correct but it’s not mathematical.

So I had to put this essay to bed before I could read Saturday’s comics. Were any of them mathematically themed? I may know soon! And were there comic strips with some mention of mathematics, but too slight for me to make a paragraph about? What could be even slighter than the mathematical content of the **Speed Bump** and the **Grand Avenue** I did choose to highlight? Please check the Reading the Comics essay I intend to publish Tuesday. I’m curious myself.

## One thought on “Reading the Comics, July 12, 2019: Ricci Tensor Edition”