The weekday Doonesbury has been in reruns for a very long while. Recently it’s been reprinting strips from the 1990s and something that I remember producing Very Worried Editorials, back in the day.

Garry Trudeau’s **Doonesbury** for the 17th reprints a sequence that starts off with the dread menace and peril of Grade Inflation, the phenomenon in which it turns out students of the generational cohort after yours are allowed to get A’s. (And, to a lesser extent, the phenomenon in which instructors respond to the treatment of education as a market by giving the “customers” the grades they’re “buying”.) The strip does depict an attitude common towards mathematics, though, the idea that it must be a subject immune to Grade Inflation: “aren’t there absolute answers”? If we are careful to say what we mean by an “absolute answer” then, sure.

But grades? Oh, there is *so much* subjectivity as to what goes into a course. And into what level to teach that course at. How to grade, and how harshly to grade. It may be easier, compared to other subjects, to make mathematics grading more consistent year-to-year. One can make many problems that test the same skill and yet use different numbers, at least until you get into topics like abstract algebra where numbers stop being interesting. But the factors that would allow any course’s grade to inflate are hardly stopped by the department name.

Zach Weinersmith’s **Saturday Morning Breakfast Cereal** for the 18th is a strip about using a great wall of equations as emblem of deep, substantial thought. The equations depicted are several meaningful ones. The top row is from general relativity, the Einstein Field Equations. These relate the world-famous Ricci curvature tensor with several other tensors, describing how mass affects the shape of space. The P = NP line describes a problem of computational science with an unknown answer. It’s about whether two different categories of problems are, in fact, equivalent. The line about is a tensor-based scheme to describe the electromagnetic field. The next two lines look, to me, like they’re deep in Schrödinger’s Equation, describing quantum mechanics. It’s possible Weinersmith has a specific problem in mind; I haven’t spotted it.

Ruben Bolling’s **Super-Fun-Pak Comix** for the 18th is one of the Guy Walks Into A Bar line, each of which has a traditional joke setup undermined by a technical point. In this case, it’s the horse counting in base four, in which representation the number 2 + 2 is written as 10. Really, yes, “10 in base four” is the number four. I imagine properly the horse should say “four” aloud. But it is quite hard to read the symbols “10” as anything but ten. It’s not as though anyone looks at the hexadecimal number “4C” and pronounces it “76”, either.

Garry Trudeau’s **Doonesbury** for the 19th twisted the Grade Inflation peril to something that felt new in the 90s: an attack on mathematics as “Eurocentric”. The joke depends on the reputation of mathematics as finding objectively true things. Many mathematicians accept this idea. After all, once we’ve seen a proof that we can do the quadrature of a lune, it’s true regardless of what anyone thinks of quadratures and lunes, and whether that person is of a European culture or another one.

But there are several points to object to here. The first is, what’s a quadrature? … This is a geometric thing; it’s finding a square that’s the same area as some given shape, using only straightedge and compass constructions. The second is, what’s a lune? It’s a crescent moon-type shape (hence the name) that you can make by removing the overlap from two circles of specific different radiuses arranged in a specific way. It turns out you can find the quadrature for the lune shape, which makes it seem obvious that you should be able to find the quadrature for a half-circle, a way easier (to us) shape. And it turns out you can’t. The third question is, who cares about making squares using straightedge and compass? And the answer is, well, it’s considered a particularly elegant way of constructing shapes. To the Ancient Greeks. And to those of us who’ve grown in a mathematics culture that owes so much to the Ancient Greeks. Other cultures, ones placing more value on rulers and protractors, might not give a fig about quadratures and lunes.

This before we get into deeper questions. For example, if we grant that some mathematical thing is objectively true, independent of the culture which finds it, then what role does the proof play? It can’t make the thing more or less true. It doesn’t eve matter whether the proof is flawed, or whether it convinces anyone. It seems to imply a mathematician isn’t actually needed for their mathematics. This runs contrary to intuition.

Anyway, this gets off the point of the student here, who’s making a bad-faith appeal to multiculturalism to excuse laziness. It’s difficult to imagine a culture that doesn’t count, at least, even if they don’t do much work with numbers like 144. Granted that, it seems likely they would recognize that 12 has some special relationship with 144, even if they don’t think too much of square roots as a thing.

And do please stop in later this Leap Day week. I figure to have one of my favorite little things, a Reading the Comics day that’s all one day. It should be at this link, when posted. Thank you.

I kind of wonder if Bolling has read Blonde Bombshell by Tom Holt, about alien dogs & base 4.

It works better as a 4 panel joke than a full novel.

LikeLike

It’s possible! I haven’t read the novel myself, but I am regularly surprised by the variety of things I have read that it’s obvious Bolling has read also.

LikeLike

That Doonesbury strip has been making me queasy all week. I didn’t know it was reruns from that long ago, so that helps.

LikeLike

Glad to relieve things a bit. But yeah, this rerun sequence has been unnerving me also and I’ll be glad when the strip moves on. It is important in charting the descent of Walden College into diploma mill, though.

LikeLike