Using my A to Z Archives: Jump (discontinuity)

In my first A-to-Z I wrote a good number of pieces about the kinds of functions there are. For example, jump, a particular kind of discontinuity in functions. This is useful because there are a lot of pieces of functional analysis where we know things are true for continuous functions. And if a function has a jump discontinuity? Usually we know the thing is true except at the discontinuity. There’s more rules, of course. And, like, Fourier series will get strange around jump discontinuities.

I’d have written the essay a bit different today, but I am in awe of a time I could wrap up the point within six hundred words. That never happens anymore.

Author: Joseph Nebus

I was born 198 years to the day after Johnny Appleseed. The differences between us do not end there. He/him.

Please Write Something Good

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: