I’m back with my longest-running regular feature here. As I’ve warned I’m trying not to include every time one of the newspaper comics (that is, mostly, ones running on Comics Kingdom or GoComics) mentions the existence of arithmetic. So, for example, both **Frank and Ernest** and **Rhymes with Orange** did jokes about the names of the kinds of triangles. You can clip those at your leisure; I’m looking to discuss deeper subjects.

Scott Hilburn’s **The Argyle Sweater** is … well, it’s just an anthropomorphic-numerals joke. I have a weakness for **The Wizard of Oz**, that’s all. Also, I don’t *know* but somewhere in the nine kerspillion authorized books written since Baum’s death there be at least one with a “wizard of odds” plot.

Bill Amend’s **FoxTrot** reads almost like a word problem’s setup. There’s a difference in cost between pizzas of different sizes. Jason and Marcus make the supposition that they could buy the difference in sizes. They are asking for something physically unreasonable, but in a way that mathematics problems might do. The ring of pizza they’d be buying would be largely crust, after all. (Some people like crust, but I doubt any are ten-year-olds like Jason and Marcus.) The obvious word problem to spin out of this is extrapolating the costs of 20-inch or 8-inch pizzas, and maybe the base cost of making any pizza however tiny.

You can think of a 16-inch-wide circle as a 12-inch-wide circle with an extra ring around it. (An annulus, we’d say in the trades.) This is often a useful way to look at circles. If you get into calculus you’ll see the extra area you get from a slight increase in the diameter (or, more likely, the radius) all over the place. Also, in three dimensions, the difference in volume you get from an increase in diameter. There are also a good number of theorems with names like Green’s and Stokes’s. These are all about what you can know about the interior of a shape, like a pizza, from what you know about the ring around the edge.

Jim Meddick’s **Monty** sees Sedgwick, spoiled scion of New Jersey money, preparing for a mathematics test. He’s allowed the use of an abacus, one of the oldest and best-recognized computational aides. The abacus works by letting us turn the operations of basic arithmetic into physical operations. This has several benefits. We (generally) understand things in space pretty well. And the beads and wires serve as aides to memory, always a struggle. Sedgwick also brings out a “hyperbolic abacus”, a tool for more abstract operations like square roots and sines and cosines. I don’t know of anything by that name, but you can design mechanical tools to do particular computations. Slide rules, for example, generally have markings to let one calculate square roots and cube roots easily. Aircraft pilots might use a flight computer, a set of plastic discs to do quick estimates of flight time, fuel consumption, ground speed, and such. (There’s even an episode of the original **Star Trek** where Spock fiddles with one!)

I have heard, but not seen, that specialized curves were made to let people square circles with something approximating a compass-and-straightedge method. A contraption to calculate sines and cosines would not be hard to imagine. It would need to be a post on a hinge, mostly, with a set of lines to read off sine and cosine values over a range of angles. I don’t know of one that existed, as it’s easy enough to print out a table of trig functions, but it wouldn’t be hard to make.

And that’s enough for this week. This and all my other Reading the Comics posts should be at this link. I hope to get this back to a weekly column, but that does depend on Comic Strip Master Command doing what’s convenient for me. We’ll see how it turns out.

## One thought on “Reading the Comics, June 18, 2022: Pizza Edition”