The 22nd of March is the least probable date for Easter. That date was last Easter in 1818, and will next be Easter in 2285. The 12th of April, though? That’s one of the most likely dates for Easter. To say what is “the” most probable date for Easter requires some thought. First, what it means to talk about the chance of an algorithmically defined quantity. Second, what it means to look at Easter. The holiday is intended to happen early in the European spring. But the start of European spring is moving through the calendar. Someday we will abandon the Gregorian calendar, or radically change the calculation of Easter. This makes it harder to say how often each possible date turns up. But we can make some rough answers.

The 15th of April is the most probable date for Easter, if we look at a 532-year span. (There are astronomical reasons to look at 532 years.) If we look at a more limited stretch, 1925 to 2100, on the assumption that that’s the maximum spread of dates that anyone alive today can be expected to see, then we have ten dates equally common, the 12th of April among them.

This little essay should let me wrap up the rest of the comic strips from the past week. Most of them were casual mentions. At least I thought they were when I gathered them. But let’s see what happens when I actually write my paragraphs about them.

Thaves’s Frank and Ernest for the 2nd is a bit of wordplay, having Euclid and Galileo talking about parallel universes. I’m not sure that Galileo is the best fit for this, but I’m also not sure there’s another person connected who could be named. It’d have to be a name familiar to an average reader as having something to do with geometry. Pythagoras would seem obvious, but the joke is stronger if it’s two people who definitely did not live at the same time. Did Euclid and Pythagoras live at the same time? I am a mathematics Ph.D. and have been doing pop mathematics blogging for nearly a decade now, and I have not once considered the question until right now. Let me look it up.

It doesn’t make any difference. The comic strip has to read quickly. It might be better grounded to post Euclid meeting Gauss or Lobachevsky or Euler (although the similarity in names would be confusing) but being understood is better than being precise.

Stephan Pastis’s Pearls Before Swine for the 2nd is a strip about the foolhardiness of playing the lottery. And it is foolish to think that even a $100 purchase of lottery tickets will get one a win. But it is possible to buy enough lottery tickets as to assure a win, even if it is maybe shared with someone else. It’s neat that an action can be foolish if done in a small quantity, but sensible if done in enough bulk.

Mark Anderson’s Andertoons for the 3rd is the Mark Anderson’s Andertoons for the week. Wavehead has made a bunch of failed attempts at subtracting seven from ten, but claims it’s at least progress that some thing have been ruled out. I’ll go along with him that there is some good in ruling out wrong answers. The tricky part is in how you rule them out. For example, obvious to my eye is that the correct answer can’t be more than ten; the problem is 10 minus a positive number. And it can’t be less than zero; it’s ten minus a number less than ten. It’s got to be a whole number. If I’m feeling confident about five and five making ten, then I’d rule out any answer that isn’t between 1 and 4 right away. I’ve got the answer down to four guesses and all I’ve really needed to know is that 7 is greater than five but less than ten. That it’s an even number minus an odd means the result has to be odd; so, it’s either one or three. Knowing that the next whole number higher than 7 is an 8 says that we can rule out 1 as the answer. So there’s the answer, done wholly by thinking of what we can rule out. Of course, knowing what to rule out takes some experience.

Mark Parisi’s Off The Mark for the 4th is roughly the anthropomorphic numerals joke for the week. It’s a dumb one, but, that’s what sketchbooks are for.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 4th is the Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 4th for the week. It shows in joking but not wrong fashion a mathematical physicist’s encounters with orbital mechanics. Orbital mechanics are a great first physics problem. It’s obvious what they’re about, and why they might be interesting. And the mathematics of it is challenging in ways that masses on springs or balls shot from cannons aren’t.

A few problems are very easy, like, one thing in circular orbit of another. A few problems are not bad, like, one thing in an elliptical or hyperbolic orbit of another. All our good luck runs out once we suppose the universe has three things in it. You’re left with problems that are doable if you suppose that one of the things moving is so tiny that it barely exists. This is near enough true for, for example, a satellite orbiting a planet. Or by supposing that we have a series of two-thing problems. Which is again near enough true for, for example, a satellite travelling from one planet to another. But these is all work that finds approximate solutions, often after considerable hard work. It feels like much more labor to smaller reward than we get for masses on springs or balls shot from cannons. Walking off to a presumably easier field is understandable. Unfortunately, none of the other fields is actually easier.

Pythagoras died somewhere around 495 BC. Euclid was born sometime around 325 BC. That’s 170 years apart. So Pythagoras was as far in Euclid’s past as, oh, Maria Gaetana Agnesi is to mine.

I think few will oppose me if I say the best part of March 2020 was that it ended. Let me close out nearly all my March business by getting through the last couple comic strips which mentioned some mathematics topic that month. I’ll still have my readership review, probably to post Friday, and then that finishes my participation in the month at last.

Connie Sun’s Connie to the for the 30th features the title character trying to explain what “exponential growth” is. She struggles. Appropriately, as it’s something we see very rarely in ordinary life.

They turn up in mathematics all the time. And mathematical physics, and such. Any process with a rate of change that’s proportional to the current amount of the thing tends to be exponential. This whether growing or decaying. Even circular motion, periodic motion, can be understood as exponential growth with imaginary numbers. So anyone doing mathematics gets trained to see, and expect, exponentials. They have great analytic properties, too. You can use them to solve differential equations. And differential equations are so much of science that it’s easy to forget they’re not.

In ordinary life, though? Well, yes, a lot of quantities will change at rates which depend on their current quantity. But in anything that’s been around a while, the quantity will usually be at, or near enough, an equilibrium. Some kind of balance. It may move away from that balance, but usually, it’ll move back towards it. (I am skipping some complicating factors. Don’t worry about them.) A mathematician will see the hidden exponentials in this. But to anyone else? The thing may start growing, but then it peters out and slows to a stop. Or it might collapse, but that change also peters out. Maybe it’ll hit a new equilibrium; maybe it’ll go back to the old. We rarely see something changing without the sorts of limits that tamp the change back down.

Even the growth of infection rates for Covid-19 will not stay exponential forever, even if there were no public health measures responding to it. There can’t be more people infected than there are people in the world. At some point, the curve representing number of infected people versus time would stop growing more and more, and would level out, from a pattern called the logistic equation. But the early stages of this are almost indistinguishable from exponential growth.

Samson’s Dark Side of the Horse for the 29th is a comforting counting-sheep joke, with half-sized sheep counted as fractions of a whole sheep. Comforting little bit of business here.

Todd Clark’s Lola for the 30th has a student asking what the end of mathematics is. And learning how after algebra comes geometry, trigonometry, calculus, topology, and more. All fair enough, though I’m surprised to see it put for that that of course someone who does enough mathematics will do topology. (I only have a casual brush with it myself, mostly in service to other topics.) But it’s nice to have it acknowledged that, if you want, you can go on learning new mathematics fields, practically without limit.

Ashleigh Brilliant’s Pot-Shots for the 30th just declares infinity to be a favorite number. Is it a number? … We have to be careful what exactly we mean by number. Allow that we are careful, though. It’s certainly at least number-adjacent.

There is this thing called the abc Conjecture. It’s a big question in number theory, which is the part of mathematics where we learn we don’t understand anything about prime numbers. Nearly a decade ago Shinichi Mochizuki announced a proof. It’s been controversial. Most importantly, it’s not been well-understood.

It’s finally getting published in a proper journal. A lot of mathematics work is passed around as PDFs, usually on arXiv.org, these days. It’s good for sharing fresh thoughts. But journal publication usually means that the paper has been reviewed, critically, and approved by people who could tell whether the reasoning is sound. Mochizuki’s paper is somewhere around 500 to 600 pages (I’ve seen different figures), and by every report hard to understand even for number theory proofs. A proof is, more than mathematicians like to admit, really an argument that convinces other mathematicians that, if we wanted to spend the time, we could find a completely rigorous proof. With very long proofs, and very complicated proofs, the standard of being convincing gets tougher.

I know; I’m more than a week behind the original publication of these strips. The Playful Math Education Blog Carnival took a lot of what attention I have these days. I’ll get caught up again soon enough. Comic Strip Master Command tried to help me, by having the close of a week ago being pretty small mathematics mentions, too. For example:

Craig Boldman and Henry Scarpelli’s Archie for the 27th has Moose struggling in mathematics this term. This is an interesting casual mention; the joke, of Moose using three words to describe a thing he said he could in two, would not fit sharply for anything but mathematics. Or, possibly, a measuring class, but there’s no high school even in fiction that has a class in measuring.

Bud Blake’s Vintage Tiger for the 27th has Tiger and Hugo struggling to find adjective forms for numbers. We can giggle at Hugo struggling for “quadruple” and going for something that makes more sense. We all top out somewhere, though, probably around quintuple or sextuple. I have never known anyone who claimed to know what the word would be for anything past decuple, and even staring at the dictionary page for “decuple” I don’t feel confident in it.

Hilary Price’s Rhymes With Orange for the 28th uses a blackboard full of calculations as shorthand for real insight into science. From context they’re likely working on some physics problem and it’s quite hard to do that without mathematics, must agree.

John Deering’s Strange Brew for the 28th name-drops slide rules, which, yeah, have mostly historical or symbolic importance these days. There might be some niche where they’re particularly useful (besides teaching logarithms), but I don’t know of it.

I haven’t forgotten about the comic strips. It happens that last week’s were mostly quite casual mentions, strips that don’t open themselves up to deep discussions. I write this before I see what I actually have to write about the strips. But here’s the first half of the past week’s. I’ll catch up on things soon.

Bill Amend’s FoxTrot for the 22nd, a new strip, has Jason and Marcus using arithmetic problems to signal pitches. At heart, the signals between a pitcher and catcher are just an index. They’re numbers because that’s an easy thing to signal given that one only has fingers and that they should be visually concealed. I would worry, in a pattern as complicated as these two would work out, about error correction. If one signal is mis-read — as will happen — how do they recognize it, and how do they fix it? This may seem like a lot of work to put to a trivial problem, but to conceal a message is important, whatever the message is.

James Beutel’s Banana Triangle for the 23rd has a character trying to convince himself of his intelligence. And doing so by muttering mathematics terms, mostly geometry. It’s a common shorthand to represent deep thinking.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 25th is a joke about orders of magnitude. The order of magnitude is, roughly, how big the number is. Often the first step of a physics problem is to try to get a calculation that’s of the right order of magnitude. Or at least close to the order of magnitude. This may seem pretty lax. If we want to find out something with value, say, 231, it seems weird to claim victory that our model says “it will be a three-digit number”. But getting the size of the number right is a first step. For many problems, particularly in cosmology or astrophysics, we’re intersted in things whose functioning is obscure. And relies on quantities we can measure very poorly. This is why we can see getting the order magnitude about right as an accomplishment.

There’s another half-dozen strips from last week that at least mention mathematics. I’ll at least mention them soon, in an essay at this link. Thank you.

Greetings, friends, and thank you for visiting the 136th installment of Denise Gaskins’s Playful Math Education Blog Carnival. I apologize ahead of time that this will not be the merriest of carnivals. It has not been the merriest of months, even with it hosting Pi Day at the center.

In consideration of that, let me lead with Art in the Time of Transformation by Paula Beardell Krieg. This is from the blog Playful Bookbinding and Paper Works. The post particularly reflects on the importance of creating a thing in a time of trouble. There is great beauty to find, and make, in symmetries, and rotations, and translations. Simple polygons patterned by simple rules can be accessible to anyone. Studying just how these symmetries and other traits work leads to important mathematics. Thus how Kreig’s page has recent posts with names like “Frieze Symmetry Group F7” but also to how symmetry is for five-year-olds. I am grateful to Goldenoj for the reference.

That link was brought to my attention by Iva Sallay, another longtime friend of my little writings here. She writes fun pieces about every counting number, along with recreational puzzles. And asked to share 1458 Tangrams Can Be A Pot of Gold, as an example of what fascinating things can be found in any number. This includes a tangram. Tangrams we see in recreational-mathematics puzzles based on ways that you can recombine shapes. It’s always exciting to be able to shift between arithmetic and shapes. And that leads to a video and related thread again pointed to me by goldenoj …

This video, by Mathologer on YouTube, explains a bit of number theory. Number theory is the field of asking easy questions about whole numbers, and then learning that the answers are almost impossible to find. I exaggerate, but it does often involve questions that just suppose you understand what a prime number should be. And then, as the title asks, take centuries to prove.

Neat visual proof of Fermat's two square theorem from @Mathologer – had to watch bits of this a few times to grasp it https://t.co/JS4FBCTPXQ

Fermat’s Two-Squares Theorem, discussed here, is not the famous one about . Pierre de Fermat had a lot of theorems, some of which he proved. This one is about prime numbers, though, and particularly prime numbers that are one more than a multiple of four. This means it’s sometimes called Fermat’s 4k+1 Theorem, which is the name I remember learning it under. (k is so often a shorthand for “some counting number” that people don’t bother specifying it, the way we don’t bother to say “x is an unknown number”.) The normal proofs of this we do in the courses that convince people they’re actually not mathematics majors.

What the video offers is a wonderful alternate approach. It turns key parts of the proof into geometry, into visual statements. Into sliding tiles around and noticing patterns. It’s also a great demonstration of one standard problem-solving tool. This is to look at a related, different problem that’s easier to say things about. This leads to what seems like a long path from the original question. But it’s worth it because the path involves thinking out things like “is the count of this thing odd or even”? And that’s mathematics that you can do as soon as you can understand the question.

I again thank Iva Sallay for that link, as well as this essay. Dan Meyer’s But Artichokes Aren’t Pinecones: What Do You Do With Wrong Answers? looks at the problem of students giving wrong answers. There is no avoiding giving wrong answers. A parent’s or teacher’s response to wrong answers will vary, though, and Meyer asks why that is. Meyer has some hypotheses. His example notes that he doesn’t mind a child misidentifying an artichoke as a pinecone. Not in the same way identifying the sum of 1 and 9 as 30 would. What is different about those mistakes?

Jessannwa’s Soft Start In The Intermediate Classroom looks to the teaching of older students. No muffins and cookies here. That the students might be more advanced doesn’t change the need to think of what they have energy for, and interest in. She discusses a class setup that’s meant to provide structure in ways that don’t feel so authority-driven. And ways to turn practicing mathematics problems into optimizing game play. I will admit this is a translation of the problem which would have worked well for me. But I also know that not everybody sees a game as, in part, something to play at maximum efficiency. It depends on the game, though. They’re on Twitter as @jesannwa.

These are thoughts about how anyone can start learning mathematics. What does it look like to have learned a great deal, though, to the point of becoming renowned for it? Life Through A Mathematician’s Eyes posted Australian Mathematicians in late January. It’s a dozen biographical sketches of Australian mathematicians. It also matches each to charities or other public-works organizations. They were trying to help the continent through the troubles it had even before the pandemic struck. They’re in no less need for all that we’re exhausted. The page’s author is on Twitter as @lthmath.

I have since the start of this post avoided mentioning the big mathematical holiday of March. Pi Day had the bad luck to fall on a weekend this year, and then was further hit by the Covid-19 pandemic forcing the shutdown of many schools. Iva Sallay again helped me by noting YummyMath’s activities page It’s Time To Gear Up For Pi Day. This hosts several worksheets, about the history of π and ways to calculate it, and several formulas for π. This even gets into interesting techniques like how to use continued fractions in finding a numerical value.

Rolands Rag Bag shared A Pi-Ku for Pi-Day featuring a poem written in a form I wasn’t aware anyone did. The “Pi-Ku” as named here has 3 syllables for the first time, 1 syllable in the second line, 4 syllables in the third line, 1 syllable the next line, 5 syllables after that … you see the pattern. (One of Avery’s older poems also keeps this form.) The form could, I suppose, go on to as many lines as one likes. Or at least to the 40th line, when we would need a line of zero syllables. Probably one would make up a rule to cover that.

As a last note, I have joined Mathstodon, the Mastodon instance with a mathematics theme. You can follow my shy writings there as @nebusj@mathstodon.xyz, or follow a modest number of people talking, largely, about mathematics. Mathstodon is a mathematically-themed microblogging site. On WordPress, I do figure to keep reading the comics for their mathematics topics. And sometime this year, when I feel I have the energy, I hope to do another A to Z, my little glossary project.

And this is what I have to offer. I hope the carnival has brought you some things of interest, and some things of delight. And, if I may, please consider this Grant Snider cartoon, Hope.

Life Through A Mathematician’s Eyes is scheduled to host the 137th installment of the Playful Math Education Blog Carnival, at the end of April. I look forward to seeing it. Good luck to us all.

I hope to publish the March 2020 Playful Math Education Blog Carnival tomorrow. If you’ve recently seen any web site that shares and explains some aspect of mathematics or mathematics education that interested or delighted you, please, share it with me, so I can share it with more people. If you do, please, let me know of your own projects, besides that, so I can mention that to this month’s audience. Thank you.

There were a handful of other comic strips last week. If they have a common theme (and I’ll try to drag one out) it’s that they circle around pragmatism. Not just using mathematics in the real world but the fussy stuff of what you can calculate and what you can use a calculation for.

And, again, I am hosting the Playful Math Education Blog Carnival this month. If you’ve run across any online tool that teaches mathematics, or highlights some delightful feature of mathematics? Please, let me know about it here, and let me know what of your own projects I should feature with it. The goal is to share things about mathematics that helped you understand more of it. Even if you think it’s a slight thing (“who cares if you can tell whether a number’s divisible by 11 by counting the digits right?”) don’t worry. Slight things count. Speaking of which …

Jef Mallett’s Frazz for the 20th has a kid ask about one of those add-the-digits divisibility tests. What happens if the number is too big to add up all the digits? In some sense, the question is meaningless. We can imagine finding the sum of digits no matter how many digits there are. At least if there are finitely many digits.

But there is a serious mathematical question here. We accept the existence of numbers so big no human being could ever know their precise value. At least, we accept they exist in the same way that “4” exists. If a computation can’t actually be finished, then, does it actually mean anything? And if we can’t figure a way to shorten the calculation, the way we can usually turn the infinitely-long sum of a series into a neat little formula?

This gets into some cutting-edge mathematics. For calculations, some. But also, importantly, for proofs. A proof is, really, a convincing argument that something is true. The ideal of this is a completely filled-out string of logical deductions. These will take a long while. But, as long as it takes finitely many steps to complete, we normally accept the proof as done. We can imagine proofs that take more steps to complete than could possibly be thought out, or checked, or confirmed. We, living in the days after Gödel, are aware of the idea that there are statements which are true but unprovable. This is not that. Gödel’s Incompleteness Theorems tell us about statements that a deductive system can’t address. This is different. This is things that could be proven true (or false), if only the universe were more vast than it is.

There are logicians who work on the problem of what too-long-for-the-universe proofs can mean. Or even what infinitely long proofs can mean, if we allow those. And how they challenge our ideas of what “proof” and “knowledge” and “truth” are. I am not among these people, though, and can’t tell you what interesting results they have concluded. I just want to let you know the kid in Frazz is asking a question you can get a spot in a mathematics or philosophy department pondering. I mean so far as it’s possible to get a spot in a mathematics or philosophy department.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 20th is a less heady topic. Its speaker is doing an ethical calculation. These sorts of things are easy to spin into awful conclusions. They treat things like suffering with the same tools that we use to address the rates of fluids mixing, or of video game statistics. This often seems to trivialize suffering, which we feel like we shouldn’t do.

This kind of calculation is often done, though. It’s rather a hallmark of utilitarianism to try writing an equation for an ethical question. It blends often more into economics, where the questions can seem less cruel even if they are still about questions of life and death. But as with any model, what you build into the model directs your results. The lecturer here supposes that guilt is diminished by involving more people. (This seems rather true to human psychology, though it’s likely more that the sense of individual responsibility dissolves in a large enough group. There are many other things at work, though, all complicated and interacting in nonlinear ways.) If we supposed that the important measure was responsibility for the killing, we would get that the more people involved in killing, the worse it is, and that a larger war only gets less and less ethical. (This also seems true to human psychology.)

Jeff Corriveau’s Deflocked for the 20th sees Mamet calculating how many days of life he expects to have left. There are roughly 1,100 days in three years, so, Mamet’s figuring on about 40 years of life. These kinds of calculation are often grim to consider. But we all have long-term plans that we would like to do (retirement, and its needed savings, are an important one) and there’s no making a meaningful plan without an idea of what the goals are.

This finally closes out the last week’s comic strips. Please stop in next week as I get to some more mathematics comics and the Playful Math Education Blog Carnival. Thanks for reading.

I thought last week’s comic strips mentioning mathematics in detail were still subjects easy to describe in one or two paragraphs each. I wasn’t quite right. So here’s a half of a week, even if it is a day later than I had wanted to post.

Lincoln Peirce’s Big Nate for the 15th is a wordy bit of Nate refusing the story problem. Nate complains about a lack of motivation for the characters in it. But then what we need for a story problem isn’t the characters to do something so much as it is the student to want to solve the problem. That’s hard work. Everyone’s fascinated by some mathematical problems, but it’s hard to think of something that will compel everyone to wonder what the answer could be.

At one point Nate wonders what happens if Todd stops for gas. Here he’s just ignoring the premise of the question: Todd is given as travelling an average 55 mph until he reaches Saint Louis, and that’s that. So this question at least is answered. But he might need advice to see how it’s implied.

So this problem is doable by long division: 1825 divided by 80, and 1192 divided by 55, and see what’s larger. Can we avoid dividing by 55 if we’re doing it by hand? I think so. Here’s what I see: 1825 divided by 80 is equal to 1600 divided by 80 plus 225 divided by 80. That first is 20; that second is … eh. It’s a little less than 240 divided by 80, which is 3. So Mandy will need a little under 23 hours.

Is 23 hours enough for Todd to get to Saint Louis? Well, 23 times 55 will be 23 times 50 plus 23 times 5. 23 times 50 is 22 times 50 plus 1 times 50. 22 times 50 is 11 times 100, or 1100. So 23 times 50 is 1150. And 23 times 5 has to be 150. That’s more than 1192. So Todd gets there first. I might want to figure just how much less than 23 hours Mandy needs, to be sure of my calculation, but this is how I do it without putting 55 into an ugly number like 1192.

Mark Leiknes’s Cow and Boy repeat for the 17th sees the Boy, Billy, trying to beat the lottery. He throws at it the terms chaos theory and nonlinear dynamical systems. They’re good and probably relevant systems. A “dynamical system” is what you’d guess from the name: a collection of things whose properties keep changing. They change because of other things in the collection. When “nonlinear” crops up in mathematics it means “oh but such a pain to deal with”. It has a more precise definition, but this is its meaning. More precisely: in a linear system, a change in the initial setup makes a proportional change in the outcome. If Todd drove to Saint Louis on a path two percent longer, he’d need two percent more time to get there. A nonlinear system doesn’t guarantee that; a two percent longer drive might take ten percent longer, or one-quarter the time, or some other weirdness. Nonlinear systems are really good for giving numbers that look random. There’ll be so many little factors that make non-negligible results that they can’t be predicted in any useful time. This is good for drawing number balls for a lottery.

Chaos theory turns up a lot in dynamical systems. Dynamical systems, even nonlinear ones, often have regions that behave in predictable patterns. We may not be able to say what tomorrow’s weather will be exactly, but we can say whether it’ll be hot or freezing. But dynamical systems can have regions where no prediction is possible. Not because they don’t follow predictable rules. But because any perturbation, however small, produces changes that overwhelm the forecast. This includes the difference between any possible real-world measurement and the real quantity.

Obvious question: how is there anything to study in chaos theory, then? Is it all just people looking at complicated systems and saying, yup, we’re done here? Usually the questions turn on problems such as how probable it is we’re in a chaotic region. Or what factors influence whether the system is chaotic, and how much of it is chaotic. Even if we can’t say what will happen, we can usually say something about when we can’t say what will happen, and why. Anyway if Billy does believe the lottery is chaotic, there’s not a lot he can be doing with predicting winning numbers from it. Cow’s skepticism is fair.

Ryan North’s Dinosaur Comics for the 17th is one about people asked to summon random numbers. Utahraptor is absolutely right. People are terrible at calling out random numbers. We’re more likely to summon odd numbers than we should be. We shy away from generating strings of numbers. We’d feel weird offering, say, 1234, though that’s as good a four-digit number as 1753. And to offer 2222 would feel really weird. Part of this is that there’s not really such a thing as “a” random number; it’s sequences of numbers that are random. We just pick a number from a random sequence. And we’re terrible at producing random sequences. Here’s one study, challenging people to produce digits from 1 through 9. Are their sequences predictable? If the numbers were uniformly distributed from 1 through 9, then any prediction of the next digit in a sequence should have a one chance in nine of being right. It turns out human-generated sequences form patterns that could be forecast, on average, 27% of the time. Individual cases could get forecast 45% of the time.

There are some neat side results from that study too, particularly that they were able to pretty reliably tell the difference between two individuals by their “random” sequences. We may be bad at thinking up random numbers but the details of how we’re bad can be unique.

Ashleigh Brilliant’s Pot-Shots for the 16th has some wordplay about multiplication and division. I’m not sure it has any real mathematical content besides arithmetic uniting multiplication and division, though.

Justin Boyd’s Invisible Bread for the 18th> has an exhausted student making the calculation of they’ll do better enough after a good night’s sleep to accept a late penalty. This is always a difficult calculation to make, since you make it when your thinking is clouded by fatigue. But: there is no problem you have which sleep deprivation makes better. Put sleep first. Budget the rest of your day around that. Take it from one who knows and regrets a lot of nights cheated of rest. (This seems to be the first time I’ve mentioned Invisible Bread around here. Given the strip’s subject matter that’s a surprise, but only a small one.)

One of Gary Larson’s The Far Side reruns for the 19th is set in a mathematics department, and features writing a nasty note “in mathematics”. There are many mathematical jokes, some of them written as equations. A mathematician will recognize them pretty well. None have the connotation of, oh, “Kick Me” or something else that would belong as a prank sign like that. Or at least nobody’s told me about them.

Thanks for reading. And, also, please remember that I’m hosting the Playful Math Education Blog Carnival later this month. Please share with me any mathematics stuff you’ve run across that teaches or entertains or more.

Pi Day was observed with fewer, and fewer on-point, comic strips than I had expected. It’s possible that the whimsy of the day has been exhausted. Or that Comic Strip Master Command advised people that the educational purposes of the day were going to be diffused because of the accident of the calendar. And a fair number of the strips that did run in the back half of last week weren’t substantial. So here’s what did run.

And now we get to the strips that actually ran on the 14th of March.

Hector D Cantú and Carlos Castellanos’s Baldo is a slightly weird one. It’s about Gracie reflecting on how much she’s struggled with mathematics problems. There are a couple pieces meant to be funny here. One is the use of oddball numbers like 1.39 or 6.23 instead of easy-to-work-with numbers like “a dollar” or “a nickel” or such. The other is that the joke is .. something in the vein of “I thought I was wrong once, but I was mistaken”. Gracie’s calculation indicates she thinks she’s struggled with a math problem a little under 0.045 times. It’s a peculiar number. Either she’s boasting that she struggles very little with mathematics, or she’s got her calculations completely wrong and hasn’t recognized it. She’s consistently portrayed as an excellent student, though. So the “barely struggles” or maybe “only struggles a tiny bit at the start of a problem” interpretation is more likely what’s meant.

π has infinitely many decimal digits, certainly. Of course, so does 2. It’s just that 2 has boring decimal digits. Rational numbers end up repeating some set of digits. It can be a long string of digits. But it’s finitely many, and compared to an infinitely long and unpredictable string, what’s that? π we know is a transcendental number. Its decimal digits go on in a sequence that never ends and never repeats itself fully, although finite sequences within it will repeat. It’s one of the handful of numbers we find interesting for reasons other than their being transcendental. This though nearly every real number is transcendental. I think any mathematician would bet that it is a normal number, but we don’t know that it is. I’m not aware of any numbers we know to be normal and that we care about for any reason other than their normality. And this, weirdly, also despite that we know nearly every real number is normal.

Dave Whamond’s Reality Check plays on the pun between π and pie, and uses the couple of decimal digits of π that most people know as part of the joke. It’s not an anthropomorphic numerals joke, but it is circling that territory.

Michael Cavna’s Warped celebrates Albert Einstein’s birthday. This is of marginal mathematics content, but Einstein did write compose one of the few equations that an average lay person could be expected to recognize. It happens that he was born the 14th of March and that’s, in recent years, gotten merged into Pi Day observances.

Oh, yes, so. I did intend to review my readership around here last month. It’s just that things got in the way. Most of them not related to the Covid-19 pandemic; it’s much more been personal matters and my paying job and such. If someone is interested in paying me to observe that I had readers WordPress records as coming merely from the European Union, drop me a note. We can work something out. Heck, slip me ten bucks and I’ll write an essay on any mathematics topic I don’t feel wholly incompetent to discuss. Or wait around for the 2020 Mathematics A-to-Z, coming whenever I do feel up to it.

Also, do please remember that I’m hosting the Playful Math Education Blog Carnival at the end of this month. If you’ve spotted anything on the web — blog, static web site, video, podcast — that enlightened you about some field of mathematics, please let me know. And let me know of your own projects. It’ll be fun.

Now to see what my readership was like back in February, impossibly long ago as that does seem to be.

I posted 11 things in February. January had been 10. There were 1,419 page views in February. That’s just about what January was. It’s below the twelve-month running average of 2,060.3 page views. This looks dire, but it’s about the same as January’s readership. And the twelve-month average does have that anomalous October spike messing things up. If we pretend that October didn’t happen, well, that mean was something like 1460 page views.

There were 991 unique visitors in February. That’s again rather below the twelve-month running average of 1401.1 unique visitors. But again if we pretend there was no October, then the running average was something like 950 unique visitors, so things aren’t all that dire. Just that the occasional taste of popularity spoils you for ages to come.

A mere 36 things got likes here in February, below the running average of 64.1 and I’m not working out what that is with October included. Most of that readership spike didn’t convert to likes or comments anyway. Those were well-liked months but they were also ones that got something posted every single day. There were 12 comments in February, roughly in line with the 13.8 comments running average.

Per post, all these figures look a bit better. There were 129 views per posting, just over the 116.6 running average. There were 90.1 unique visitors per posting, above the running average of 78.6. There were 3.3 likes per posting, below the anemic average of 4.1. There were even 1.1 comments per posting, technically above the average of 0.9. If I could just post something four times per day that October peak would be merely an average month.

The most popular postings in February were mostly the usual suspects. Just one surprised me with its appearance:

There were 210 pages that got any views at all in February, close to the 218 of January. 108 of them got more than one view, just about the same as January’s 102. 25 pages got at least ten views. The previous couple months saw 23 and 27 posts that popular.

67 countries or country-like entities sent me any readers at all in February. That’s up from 63 in January and 60 in December. 19 of them were single-view countries, up from January’s 15 and December’s 18. Here’s the roster:

Country

Readers

United States

851

Philippines

85

India

57

Canada

53

United Kingdom

41

Germany

35

Australia

26

Finland

23

Singapore

23

Brazil

19

Thailand

14

Denmark

13

Hungary

13

Hong Kong SAR China

10

South Africa

10

Russia

9

Japan

8

Netherlands

8

New Zealand

8

Vietnam

8

Mexico

7

Indonesia

6

Poland

6

Malaysia

5

Belgium

4

France

4

Italy

4

Sweden

4

Austria

3

Colombia

3

Greece

3

Jamaica

3

Uganda

3

Ukraine

3

Algeria

2

Azerbaijan

2

China

2

Cyprus

2

Ghana

2

Israel

2

Kenya

2

Nigeria

2

Portugal

2

Slovenia

2

Spain

2

Switzerland

2

Turkey

2

United Arab Emirates

2

American Samoa

1 (**)

Argentina

1

Bulgaria

1

Cambodia

1 (*)

Croatia

1

Dominican Republic

1

Egypt

1

European Union

1

Ireland

1

Libya

1

Lithuania

1

Northern Mariana Islands

1

Peru

1

Puerto Rico

1

Saudi Arabia

1 (**)

Slovakia

1 (**)

South Korea

1 (*)

Sri Lanka

1

Taiwan

1

Cambodia and South Korea were single-view countries in January also. American Samoa, Saudi Arabia, and Slovakia have been single-view countries for three months.

In February I posted 9,699 words by WordPress’s counter. That’s 881.7 words per posting. For the year my average post, as of the start of the month, was 755.1 words per post. Some months are talky. I had started the month with 100,432 page views, just missing out on being number 100,000 myself. And these came from a logged 54,920 unique visitors. And I had posted a total of 1,424 things from the dawn of time to the 1st of March, which by some strange fluke was itself fifty thousand years ago.

Well, I hope to keep posting and to review March a little closer to the 1st of April, which looks to be about fifty thousand years in the future. To follow along with me, add the feed https://nebusresearch.wordpress.com/feed/ to your RSS reader. If you need an RSS reader, sign up for a free account on Dreamwidth or Livejournal; you can put RSS feeds on your Friends page. Or if you prefer a more old-fashioned way that shows up in my statistics here, use the “Follow Nebusresearch” button at the upper right corner of this page and follow it through your WordPress account. Or follow my fallow @Nebusj account on Twitter where new posts get announced at least. As ever, thank you for reading. Be well, please.

There were a good number of comic strips mentioning mathematical subjects last week, as you might expect for one including the 14th of March. Most of them were casual mentions, though, so that’s why this essay looks like this. And is why the week will take two pieces to finish.

Jonathan Lemon and Joey Alison Sayer’s Little Oop for the 8th is part of a little storyline for the Sunday strips. In this the young Alley Oop has … travelled in time to the present. But different from how he does in the weekday strips. What’s relevant about this is Alley Oop hearing the year “2020” and mentioning how “we just got math where I come from” but being confident that’s either 40 or 400. Which itself follows up a little thread in the Sunday strips about new numbers on display and imagining numbers greater than three.

Paul Trap’s Thatababy for the 9th is a memorial strip to Katherine Johnson. She was, as described, a NASA mathematician, and one of the great number of African-American women whose work computing was rescued from obscurity by the book and movie Hidden Figures. NASA, and its associated agencies, do a lot of mathematical work. Much of it is numerical mathematics: a great many orbital questions, for example, can not be answered with, like, the sort of formula that describes how far away a projectile launched on a parabolic curve will land. Creating a numerical version of a problem requires insight and thought about how to represent what we would like to know. And calculating that requires further insight, so that the calculation can be done accurately and speedily. (I think about sometime doing a bit about the sorts of numerical computing featured in the movie, but I would hardly be the first.)

I also had thought the Mathematical Moments from the American Mathematical Society had posted an interview with her last year. I was mistaken but in, I think, a forgivable way. In the episode “Winning the Race”, posted the 12th of June, they interviewed Christine Darden, another of the people in the book, though not (really) the movie. Darden joined NASA in the late 60s. But the interview does talk about this sort of work, and how it evolved with technology. And, of course, mentions Johnson and her influence.

Graham Harrop’s Ten Cats for the 9th is another strip mentioning Albert Einstein and E = mc^{2}. And using the blackboard full of symbols to represent deep thought.

Patrick Roberts’s Todd the Dinosaur for the 10th showcases Todd being terrified of fractions. And more terrified of story problems. I can’t call it a false representation of the kinds of mathematics that terrify people.

Stephen Beals’s Adult Children for the 11th has a character mourning that he took calculus as he’s “too stupid to be smart”. Knowing mathematics is often used as proof of intelligence. And calculus is used as the ultimate of mathematics. It’s a fair question why calculus and not some other field of mathematics, like differential equations or category theory or topology. Probably it’s a combination of slightly lucky choices (for calculus). Calculus is old enough to be respectable. It’s often taught as the ultimate mathematics course that people in high school or college (and who aren’t going into a mathematics field) will face. It’s a strange subject. Learning it requires a greater shift in thinking about how to solve problems than even learning algebra does. And the name is friendly enough, without the wordiness or technical-sounding language of, for example, differential equations. The subject may be well-situated.

Tony Rubino and Gary Markstein’s Daddy’s Home for the 11th has the pacing of a logic problem, something like the Liar’s Paradox. It’s also about homework which happens to be geometry, possibly because the cartoonists aren’t confident that kids that age might be taking a logic course.

I’ll have the rest of the week’s strips, including what Comic Strip Master Command ordered done for Pi Day, soon. And again I mention that I’m hosting this month’s Playful Math Education Blog Carnival. If you have come across a web site with some bit of mathematics that brought you delight and insight, please let me know, and mention any creative projects that you have, that I may mention that too. Thank you.

So the first bit of news: I’m hosting the Playful Math Education Blog Carnival later this month. This is a roaming blog link party, sharing blogs that delight or educate, or ideally both, about mathematics. As mentioned the other day Iva Sallay of Find the Factors hosted the 135th of these. My entry, the 136th, I plan to post sometime the last week of March.

And I’ll need help! If you’ve run across a web site, YouTube video, blog post, or essay that discusses something mathematical in a way that makes you grin, please let me know, and let me share it with the carnival audience.

This Saturday is March 14th, which we’ve been celebrating as Pi Day. I remain skeptical that it makes a big difference in people’s view of mathematics or in their education. But an afternoon spent talking about mathematics with everyone agreeing that, for today, we won’t complain about how hard it always was or how impossible we always found it, is pleasant. And that’s a good thing. I don’t know how much activity there’ll be for it, since the 14th is a weekend day this year. And the Covid-19 problem has got all the schools in my state closed through to April, so any calendar relevance is shattered.

But I have some things in the archive anyway. Last year I gathered Six Or Arguably Four Things For Pi Day, a collection of short essays about ways to calculate π well or poorly, and about some of the properties we’re pretty sure that π has, even if we can’t prove it. Also this fascinating physics problem that yields the digits of π.

And the middle of March often brings out Comic Strip Master Command. It looks like I’ve had at least five straight Pi Day editions of Reading the Comics, although most of them cover strips from more than just the 14th of March. From the past:

I apologize that obligations have kept me from writing some things that I mean to. So let me just point you to Iva Sallay, whose Find the Factor recreational math puzzle page hosted the 135th Playful Math Education Blog Carnival this past month. The Blog Carnival is a fun roaming thing that I’ve hosted once, and do hope to host again. It’s a curated collection of other mathematics sites that are fun or interesting or hopefully both together.

It was another pretty quiet week for mathematically-themed comic strips. Most of what did mention my subject just presented it as a subject giving them homework or quizzes or exams. But let’s look over what is here.

Hector D. Cantú and Carlos Castellanos’s Baldo for the 4th similarly has mathematics homework under review. And, you know, one of those mistakes that’s obvious if you do a quick “sanity check”, thinking over whether your answer could make sense.

Ted Shearer’s Quincy for the 5th is the most interesting strip of the week, since it suggests an actual answerable mathematics problem. How much does a professional basketball player earn per dribble? The answer requires a fair bit of thought, like, what do you mean by “a professional basketball player”? There’s many basketball leagues around the world; even if we limit the question to United States-and-Canada leagues, there’s a fair number of minor leagues. If we limit it to the National Basketball Association there’s the question of whether the salary is the minimum union contract guarantee, or the mean salary, or the median salary. It’s exciting to look at the salary of the highest-paid players, too, of course.

Working out the number of dribbles per year is also a fun estimation challenge. Even if we pick a representative player there’s no getting an exact count of how many dribbles they’ve made over a year, even if we just consider “dribbling during games” to be what’s paid for. (And any reasonable person would have to count all the dribbling done during warm-up and practice as part of what’s being paid for.) But someone could come up with an estimate of, for example, about how long a typical player has the ball for a game, and how much of that time is spent moving the ball or preparing for a free throw or other move that calls for dribbling. How long a dribble typically takes. How many games a player typically plays over the year. The estimate you get from this will never, ever, be exactly right. But it should be close enough to give an idea how much money a player earns in the time it takes to dribble the ball once. So occasionally the comics put forth a good story problem after all.

Quincy on the 7th is again worrying about his mathematics and spelling tests. It’s a cute coincidence that these are the subjects worried about in Wee Pals too.

Paul Gilligan’s Pooch Cafe for the 7th is part of a string of jokes about famous dogs. This one’s a riff on Albert Einstein, mentioned here because Albert Einstein has such strong mathematical associations.

This week the BBC podcast In Our Time, a not-quite-hourlong panel show discussing varied topics, came to Paul Dirac. It can be heard here, or from other podcast sources. I get it off iTunes myself. The discussion is partly about his career and about the magnitude of his work. It’s not going to make anyone suddenly understand how to do any of his groundbreaking work in quantum mechanics. But it is, after all, an hourlong podcast for the general audience about, in this case, a physicist. It couldn’t explain spinors.

And even if you know a fair bit about Dirac and his work you might pick up something new. This might be slight: one of the panelists mentioned Dirac, in retirement, getting to know Sting. This is not something impossible, but it’s also not a meeting I would have ever imagined happening. So my week has been broadened a bit.

I do read other people’s mathematics writing, even if I don’t do it enough. A couple days ago RJ Lipton and KW Regan’s Reductions And Jokes discussed how one can take a problem and rewrite it as a different problem. This is one of the standard mathematician’s tricks. The point to doing this is that you might have a better handle on the new problem.

“Better” is an aesthetic judgement. It reflects whether the new problem is easier to work with. Along the way, they offer an example that surprised and delighted me, and that I wanted to share. It’s about multiplying whole numbers. Multiplication can take a fair while, as anyone who’s tried to do 38 times 23 by hand has found out. But we can speed that up. A multiplication table is a special case of a lookup table, a chunk of stored memory which has computed ahead of time all the multiplications someone is likely to do. Then instead of doing them, you just look them up.

The catch is that a multiplication table takes memory. To do all the multiplications for whole numbers 1 through 10 you need … well, not 100 memory cells. But 55. To have 1 through 20 worked out ahead of time you need 210 memory cells. Can we do better?

If addition and subtraction are easy enough to do? And if dividing by two is easy enough? Then, yes. Instead of working out every pair multiplication, work out the squares of the whole numbers. And then make use of this identity:

And that delights me. It’s one of those relationships that’s sitting there, waiting for anyone who’s ever squared a binomial to notice. I don’t know that anyone actually uses this. But it’s fun to see multiplication worked out by a different yet practical way.

I can clear out all last week’s mathematically-themed comic strips in one move, it looks like. There were a fair number of strips; it’s just they mostly mention mathematics in passing.

Bill Amend’s FoxTrot for the 23rd — a new strip; it’s still in original production for Sundays — has Jason asking his older sister to double-check a mathematics problem. Double-checking work is reliably useful, as proof against mistakes both stupid and subtle. But that’s true of any field.

Jim Unger’s Herman for the 23rd has a parent complaining about the weird New Math. The strip is a rerun and I don’t know from when; it hardly matters. The New Math has been a whipping boy for mathematics education since about ten minutes after its creation. And the complaint attaches to every bit of mathematics education reform ever. I am sympathetic to parents, who don’t see why their children should be the test subjects for a new pedagogy. And who don’t want to re-learn mathematics in order to understand what their children are doing. But, still, let someone know you were a mathematics major and they will tell you how much they didn’t understand or like mathematics in school. It’s hard to see why not try teaching it differently.

(If you do go out pretending to be a mathematics major, don’t worry. If someone challenges you on a thing, cite “Euler’s Theorem”, and you’ll have said something on point. And I’ll cover for you.)

Brian Gordon’s Fowl Language for the 25th has a father trying to explain the vastness of Big Numbers to their kid. Past a certain point none of us really know how big a thing is. We can talk about 300 sextillion stars, or anything else, and reason can tell us things about that number. But do we understand it? Like, can we visualize that many stars the way we can imagine twelve stars? This gets us into the philosophy of mathematics pretty soundly. 300 sextillion is no more imaginary than four is, but I know I feel more confident in my understanding of four. How does that make sense? And can you explain that to your kid?

Vic Lee’s Pardon my Planet for the 28th has an appearance by Albert Einstein. And a blackboard full of symbols. The symbols I can make out are more chemistry than mathematics, but they do exist just to serve as decoration.

Ruben Bolling’s Super-Fun-Pak Comix for the 28th is an installment of The Uncertainty Principal. This is a repeat, even allowing that Super-Fun-Pak Comix are extracted reruns from Tom The Dancing Bug. As I mention in the essay linked there, the uncertainty principle being referred to here is a famous quantum mechanics result. It tells us there are sets of quantities whose values we can’t, even in principle, measure simultaneously to unlimited precision. A precise measurement of, for example, momentum destroys our ability to be precise about position. This is what makes the joke here. The mathematics of this reflects non-commutative sets of operators.