My 2019 Mathematics A To Z: Abacus


Today’s A To Z term is the Abacus. It was suggested by aajohannas, on Twitter as @aajohannas. Particularly asked for was how to use an abacus. The abacus has been used by a great many cultures over thousands of years. So it’s hard to say that there is any one right way to use it. I’m going to get into a way to use it to compute, any more than there is a right way to use a hammer. There are many hammers, and many things to hammer. But there are similarities between all hammers, and the ways to use them as hammers are similar. So learning one kind, and one way to use that kind, can be a useful start.

Cartoony banner illustration of a coati, a raccoon-like animal, flying a kite in the clear autumn sky. A skywriting plane has written 'MATHEMATIC A TO Z'; the kite, with the letter 'S' on it to make the word 'MATHEMATICS'.
Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

Abacus.

I taught at the National University of Singapore in the first half of the 2000s. At the student union was this sheltered overhang formed by a stairwell. Underneath it, partly exposed to the elements (a common building style there) was a convenience store. Up front were the things with high turnover, snacks and pop and daily newspapers, that sort of thing. In the back, beyond the register, in the areas that the rain, the only non-gentle element, couldn’t reach even whipped by wind, were other things. Miscellaneous things. Exam bluebooks faded with age and dust. Good-luck cat statues colonized by spiderwebs. Unlabelled power cables for obsolete electronics. Once when browsing through this I encountered two things that I bought as badges of office.

One was a slide rule, a proper twelve-inch one. I’d had one already, a $2 six-inch-long one I’d gotten as an undergraduate from a convenience store the university had already decided to evict. The NUS one was a slide rule you could do actual work on. Another was a soroban, a compact Japanese abacus, in a patterned cardboard box a half-inch too short to hold it. I got both. For the novelty, yes. Also, I taught Computational Science. I felt it appropriate to have these iconic human computing devices.

But do I use them? Other than for decoration? … No, not really. I have too many calculators to need them. Also I am annoyed that while I can lay my hands on the slide rule I have put the soroban somewhere so logical and safe I can’t find it. A couple photographs would improve this essay. Too bad.

Do I know how to use them? If I find them? The slide rule, sure. If you know that a slide rule works via logarithms, and you play with it a little? You know how to use a slide rule. At least a little, after a bit of experimentation and playing with the three times table.

The abacus, though? How do you use that?

In childhood I heard about abacuses. That there’s a series of parallel rods, each with beads on them. Four placed below a center beam, one placed above. Sometimes two placed above. That the lower beads on a rod represent one each. That the upper bead represents five. That some people can do arithmetic on that faster than others can an electric calculator. And that was about all I got, or at least retained. How to do this arithmetic never penetrated my brain. I imagined, well, addition must be easy. Say you wanted to do three plus six, well, move three lower beads up to the center bar. Then slide one lower and one upper bead, for six, to the center bar, and read that off. Right?

The bizarre thing is my naive childhood idea is right. At least in the big picture. Let each rod represent one of the numbers in base-ten style. It’s anachronistic to the abacus’s origins to speak of a ones rod, a tens rod, a hundreds rod, and so on. So what? We’re using this tool today. We can use the ideas of base ten to make our understanding easier.

Pick a row of beads that you want to represent the ones. The row to the left of that represents tens. To the left of that, hundreds. To the right of the ones is the one-tenths, and the one-hundredths, and so on. This goes on to however far your need and however big your abacus is.

Move beads to the center to represent numbers you want. If you want ’21’, slide two lower beads up in the tens column and one lower bead in the ones column. If you want ’38’, slide three lower beads up in the tends column and one upper and three lower beads in the ones column.

To add two numbers, slide more beads representing those numbers toward the center bar. To subtract, slide beads away. Multiplication and division were beyond my young imagination. I’ll let them wait a bit.

There are complications. The complications are for good reason. When you master them, they make computation swifter. But you pay for that later speed with more time spent learning. This is a trade we make, and keep making, in computational mathematics. We make a process more reliable, more speedy, by making it less obvious.

Some of this isn’t too difficult. Like, work in one direction so far as possible. It’s easy to suppose this is better than jumping around from, say, the thousands digit to the tens to the hundreds to the ones. The advice I’ve read says work from the left to the right, that is, from the highest place to the lowest. Arithmetic as I learned it works from the ones to the tens to the hundreds, but this seems wiser. The most significant digits get calculated first this way. It’s usually more important to know the answer is closer to 2,000 than to 3,000 than to know that the answer ends in an 8 rather than a 6.

Some of this is subtle. This is to cope with practical problems. Suppose you want to add 5 to 6? There aren’t that many beads on any row. A Chinese abacus, which has two beads on the upper part, could cope with this particular problem. It’s going to be in trouble when you want to add 8 to 9, though. That’s not unique to an abacus. Any numerical computing technique can be broken by some problem. This is why it’s never enough to calculate; we still have to think. For example, thinking will let us handle this five plus six difficulty.

Consider this: four plus one is five. So four and one are “complementary numbers”, with respect to five. Similarly, three and two are five’s complementary numbers. So if we need to add four to a number, that’s equivalent to adding five and subtracting one. If we need to add two, that’s equivalent to adding five and subtracting three. This will get us through some shortages in bead count.

And consider this: four plus six is ten. So four and six are ten-complementary numbers. Similarly, three and seven are ten’s complementary numbers. Two and eight. One and nine. This gets us through much of the rest of the shortage.

So here’s how this works. Suppose we have 35, and wish to add 6 to it. There aren’t the beads to add six to the ones column. So? Instead subtract the complement of six. That is, add ten and subtract four. In moving across the rows, when you reach the tens, slide one lower bead up, making the abacus represent 45. Then from the ones column subtract four. that is, slide the upper bead away from the center bar, and slide the complement to four, one bead, up to the center. And now the abacus represents 41, just like it ought.

If you’re experienced enough you can reduce some of these operations, sliding the beads above and below the center bar at once. Or sliding a bead in the tens and another in the ones column at once. Don’t fret doing this. Worry about making correct steps. You’ll speed up with practice. I remember advice from a typesetting manual I collected once: “strive for consistent, regular keystrokes. Speed comes with practice. Errors are time-consuming to correct”. This is, mutatis mutandis, always good advice.

Subtraction works like addition. This should surprise few. If you have the beads in place, just remove them: four minus two takes no particular insight. If there aren’t enough beads? Fall back on complements. If you wish to do 35 minus 6? Set up 35, and calculate 35 minus 10 plus 4. When you get to the tens rod, slide one bead down; this leaves you with 25. Then in the ones column, slide four beads up. This leaves you with 29. I’m so glad these seem to be working out.

Doing longer additions and subtractions takes more rows, but not actually more work. 35.2 plus 6.4 is the same work as 35 plus 6 and 2 plus 4, each of which you, in principle, know how to do. 35.2 minus 6.4 is a bit more fuss. When you get to the 2 minus 4 bit you have to do that addition-of-complements stuff. But that’s not any new work.

Where the decimal point goes is something you have to keep track of. As with the slide rule, the magnitude of these numbers is notional. Your fingers move the same way to add 352 and 64 as they will 0.352 and 0.064. That’s convenient.

Multiplication gets more tedious. It demands paying attention to where the decimal point is. Just like the slide rule demands, come to think of it. You’ll need columns on the abacus for both the multiplicands and the product. And you’ll do a lot of adding up. But at heart? 2038 times 3.7 amounts to doing eight multiplications. 8 times 7, 3 times 7, 0 times 7 (OK, that one’s easy), 2 times 7, 3 times 7, 3 times 3, 0 times 3 (again, easy), and 2 times 3. And then add up these results in the correct columns. This may be tedious, but it’s not hard. It does mean the abacus doesn’t spare you having to know some times tables. I mean, you could use the abacus to work out 8 times 7 by adding seven to itself over and over, but that’s time-consuming. You can save time, and calculation steps, by memorization. By knowing some answers ahead of time.

Totton Heffelfinger and Gary Flom’s page, from which I’m drawing almost all my practical advice, offers a good notation of lettering the rods of the abacus, A, B, C, D, and so on. To multiply, say, 352 by 64 start by putting the 64 on rods BC. Set the 352 on rods EFG. We’ll get the answer with rod K as the ones column. 2 times 4 is 8; put that on rod K. 5 times 4 is 20; add that to rods IJ. 3 times 4 is 12; add that to rods HI. 2 times 6 is 12; add that to rods IJ. 5 times 6 is 30; add that to rods HI. 3 times 6 is 18; add that to rods GH. All going well this should add up to 22,528, spread out along rods GHIJK. I can see right away at least the 8 is correct.

You would do the same physical steps to multiply, oh, 3.52 by 0.0064. You have to take care of the decimal place yourself, though.

I see you, in the back there, growing suspicious. I’ll come around to this. Don’t worry.

Division is … oh, I have to fess up. Division is not something I feel comfortable with. I can read the instructions and repeat the examples given. I haven’t done it enough to have that flash where I understand the point of things. I recognize what’s happening. It’s the work of division as done by hand. You know, 821 divided by 56 worked out by, well, 56 goes into 82 once with a remainder of 26. Then drop down the 1 to make this 261. 56 goes into 261 … oh, it would be so nice if it went five times, but it doesn’t. It goes in four times, with a remainder of 37. I can walk you through the steps but all I am truly doing is trying to keep up with Totton Heffelfinger and Gary Flom’s instructions here.

There are, I read, also schemes to calculate square roots on the abacus. I don’t know that there are cube-root schemes also. I would bet on there being such, though.

Never mind, though. The suspicious thing I expect you’ve noticed is the steps being done. They’re represented as sliding beads along rods, yes. But the meaning of these steps? They’re the same steps you would do by doing arithmetic on paper. Sliding two beads and then two more beads up to the center bar isn’t any different from looking at 2 + 2 and representing that as 4. All this ten’s-complement stuff to subtract one number from another is just … well, I learned it as subtraction by “borrowing”. I don’t know the present techniques but I’m sure they’re at heart the same. But the work is eerily like what you would do on paper, using Arabic numerals.

The slide rule uses a logarithm-based ruler. This makes the addition of distances along the slides match the multiplication of the values of the rulers. What does the abacus do to help us compute?

Why use an abacus?

What an abacus gives us is memory. It stores numbers. It lets us break a big problem into a series of small problems. It lets us keep a partial computation while we work through those steps. We don’t add 35.2 to 6.4. We add 3 to 0 and 5 to 6 and 2 to 4. We don’t multiply 2038 by 3.7. We multiply 8 by 7, and 8 by 3, and 3 by 7, and 3 by 3, and so on.

And this is most of numerical computing, even today. We describe what we want to do as these high-level operations. But the computation is a lot of calculations, each one of them simple. We use some memory to hold partially completed results. Memory, the ability to store results, lets us change hard problems into long strings of simple ones.

We do more things the way the abacus encourages. We even use those complementary numbers. Not five’s or ten’s complements, not with binary arithmetic computers. Two’s complement arithmetic makes it possible to subtract, or write negative numbers, in ways that are easy to calculate. That there are a set number of rods even has its parallel in modern computing. When representing a real number on the computer we have only so many decimal places. (Yes, yes, binary digit places.) At least unless we use a weird data structure. This affects our calculations. There are numbers we can’t represent perfectly, such as one-third. We need to think about whether this affects what we are using our calculation for.

There are major differences between a digital computer and a person using the abacus. But the processes are similar. This may help us to understand why computational science works the way it does. It may at least help us understand those contests in the 1950s where the abacus user was faster than the calculator user.

But no, I confess, I only use mine for decoration, or will when I find it again.


Thank you for reading. All the Fall 2019 A To Z posts should be at this link. Furthermore, both this year’s and all past A To Z sequences should be at this link. And I am still soliciting subjects for the first third of the alphabet.

Advertisements

Reading the Comics, August 14, 2015: Name-Dropping Edition


There have been fewer mathematically-themed comic strips than usual the past week, but they have been coming in yet. This week seems to have included a fair number of name-drops of interesting mathematical concepts.

David L Hoyt and Jeff Knurek’s Jumble (August 10) name-drops the abacus. It has got me wondering about how abacuses were made in the pre-industrial age. On the one hand they could in principle be made by anybody who has beads and rods. On the other hand, a skillfully made abacus will make the tool so much more effective. Who made and who sold them? I honestly don’t know.

He needed a partner to build a new abacus business, and his buddy said _____ __ __.
David L Hoyt and Jeff Knurek’s Jumble for the 10th of August, 2015. The link will likely expire around the 10th of September.

Mick Mastroianni and Mason Mastroianni’s Dogs of C Kennel (August 11) has Tucker reveal that most of the mathematics he scrawls is just to make his work look harder. I suspect Tucker overdid his performance. My experience is you can get the audience’s eyes to glaze over with much less mathematics on the board.

Leigh Rubin’s Rubes (August 11) mentions chaos theory. It’s not properly speaking a Chaos Butterfly comic strip. But certainly it’s in the vicinity.

Zach Weinersmith’s Saturday Morning Breakfast Cereal (August 11) name-drops Banach-Tarski. This is a reference to a famous-in-some-circles theorem, or paradox. The theorem, published in 1924 by Stefan Banach and Alfred Tarski, shows something astounding. It’s possible to take a ball, and disassemble it into a number of pieces. Then, doing nothing more than sliding and rotating the pieces, one can reassemble the pieces to get two balls each with the same volume of the original. If that doesn’t sound ridiculous enough, consider that it’s possible to do this trick by cutting the ball into as few as five pieces. (Four, if you’re willing to exclude the exact center of the original ball.) So you can see why this is called a paradox, and why this joke works for people who know the background.

Scott Hilburn’s The Argyle Sweater (August 12) illustrates that joke about rounding up the cattle you might have seen going around.

Reading the Comics, December 30, 2014: Surely This Is It For The Year Edition?


Well, I thought it’d be unlikely to get too many more mathematics comics before the end of the year, but Comic Strip Master Command apparently sent out orders to clear out the backlog before the new calendar year starts. I think Dark Side of the Horse is my favorite of the strips, blending a good joke with appealing artwork, although The Buckets gives me the most to talk about.

Greg Cravens’s The Buckets (December 28) is about what might seem only loosely a mathematical topic: that the calendar is really a pretty screwy creation. And it is, as anyone who’s tried to program a computer to show dates has realized. The core problem, I suppose, is that the calendar tries to meet several goals simultaneously: it’s supposed to use our 24-hour days to keep track of the astronomical year, which is an approximation to the cycle of seasons of the year, and there’s not a whole number of days in a year. It’s also supposed to be used to track short-term events (weeks) and medium-term events (months and seasons). The number of days that best approximate the year, 365 and 366, aren’t numbers that lend themselves to many useful arrangements. The months try to divide that 365 or 366 reasonably uniformly, with historial artifacts that can be traced back to the Roman calendar was just an unspeakable mess; and, something rarely appreciated, the calendar also has to make sure that the date of Easter is something reasonable. And, of course, any reforming of the calendar has to be done with the agreement of a wide swath of the world simultaneously. Given all these constraints it’s probably remarkable that it’s only as messed up as it is.

To the best of my knowledge, January starts the New Year because Tarquin Priscus, King of Rome from 616 – 579 BC, found that convenient after he did some calendar-rejiggering (particularly, swapping the order of February and January), though I don’t know why he thought that particularly convenient. New Years have appeared all over the calendar year, though, with the start of January, the start of September, Christmas Day, and the 25th of March being popular options, and if you think it’s messed up to have a new year start midweek, think about having a new year start in the middle of late March. It all could be worse.

Continue reading “Reading the Comics, December 30, 2014: Surely This Is It For The Year Edition?”