My All 2020 Mathematics A to Z: Extraneous Solutions


Iva Sallay, the kind author of the Find the Factors recreational mathematics puzzle, suggested this topic for the letter X. It’s a fun chance to look at some of the basics of (high school) algebra again.

Color cartoon illustration of a coati in a beret and neckerchief, holding up a director's megaphone and looking over the Hollywood hills. The megaphone has the symbols + x (division obelus) and = on it. The Hollywood sign is, instead, the letters MATHEMATICS. In the background are spotlights, with several of them crossing so as to make the letters A and Z; one leg of the spotlights has 'TO' in it, so the art reads out, subtly, 'Mathematics A to Z'.
Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

Extraneous Solutions.

When developing general relativity, Albert Einstein created a convention. He’s not unique in that. All mathematicians create conventions. They use shorthand for an idea that’s complicated or common. Relatively unique is that other people adopted his convention, because it expressed an idea compactly. This was in working with tensors, which look somewhat like matrixes and have a lot of indexes. In the equations of general relativity you need to take sums over many combinations of values of these indexes. What indexes there are are the same in most every problem. The possible values of the indexes is constant, problem to problem, too.

So Einstein saved himself writing, and his publishers from typesetting, a lot of redundant writing. This by writing out the conditions which implied “take the sums over these indexes on this range”. This is good for people doing general relativity, and certain kinds of geometry. It’s a problem only when an expression escapes its context. When it’s shown to a student or someone who doesn’t know this is a differential-geometry problem. Then the problem becomes confusing, and they can’t work on it.

This is not to fault the Einstein Summation Convention. It puts common necessary scaffolding out of the way and highlighting the interesting unique parts of a problem. Most conventions aim for that. We have the hazard, though, that we may not notice something breaking the convention.

And this is how we create extraneous solutions. And, as a bonus, to have missing solutions. We encounter them with the start of (high school) algebra, when we get used to manipulating equations. When we solve an equation what we always want is something clear, like

x = 2

But it never starts that way. It always starts with something like

x^3 - 8x^2 + 24x - 32 + 22\frac{1}{x} = \frac{6}{x}

or worse. We learn how to handle this. We know that we can do six things that do not alter the truth of an equation. We can regroup terms in the equation. We can add the same number to both sides of the equation. We can multiply both sides of the equation by some number besides zero. We can add zero to one side of the equation. We can multiply one side of the equation by 1. We can replace one quantity with another that has the same value. That doesn’t sound like a lot. It covers more than it seems. Multiplying by 1, for example, is the same as multiplying by \frac{x}{x} . If x isn’t zero, then we can multiply both sides of the equation by that x. And x can’t be zero, or else \frac{x}{x} would not be 1.

So with my example there, start off by multiplying the right side by 1, in the guise \frac{x}{x} . Then multiply both sides by that same non-zero x. At this point the right-hand side simplifies to being 6. Add a -6 to both sides. And then with a lot of shuffling around you work out that the equation is the same as

(x - 2)^4 = 0

And that can only be true when x equals 2.

It should be easy to catch spurious solutions creeping in. They must result from breaking a rule. The obvious problem is multiplying — or dividing — by zero. We expect those to be trouble. Wikipedia has a fine example:

\frac{1}{x - 2} = \frac{3}{x + 2} - \frac{6x}{(x - 2)(x + 2)}

The obvious step is to multiply this whole mess by (x - 2)(x + 2) , which turns our work into a linear equation. Very soon we find the solution must be x = -2 . Which would make at least two of the denominators in the original equation zero. We know not to want that.

The problems can be subtler, though. Consider:

x - 12 = \sqrt{x}

That’s not hard to solve. Multiply both sides by x - 12 . Although, before working out \sqrt{x}\cdot(x - 12) substitute that x - 12 with something equal to it. We know one thing is equal to it, \sqrt{x} . Then we have

(x - 12)^2 = x

It’s a quadratic equation. A little bit of work shows the roots are 9 and 16. One of those answers is correct and the other spurious. At no point did we divide anything, by zero or anything else.

So what is happening and what is the necessary rhetorical link to the Einstein Summation Convention?

There are many ways to look at equations. One that’s common is to look at them as functions. This is so common that we’ll elide between an equation and a function representation. This confuses the prealgebra student who wants to know why sometimes we look at

x^2 - 25x + 144 = 0

and sometimes we look at

f(x) = x^2 - 25x + 144

and sometimes at

f(x) = x^2 - 25x + 144 = 0

The advantage of looking at the function which shadows any equation is we have different tools for studying functions. Sometimes that makes solving the equation easier. In this form, we’re looking for what in the domain matches with something particular in the range.

And now we’ve reached the convention. When we write down something lke x^2 - 25x + 144 we’re implicitly defining a function. A function has three pieces. It has a set called the domain, from which we draw the independent variable. It has a set called the range. It has a rule matching elements in the domain to an element in the range. We’ve only given the rule. What are the domain and what’s the range for f(x) = x^2 - 25x + 144 ?

And here are the conventions. If we haven’t said otherwise, the domain and range are usually either the real numbers or the complex numbers. If we used x or y or t as the independent variable, we mean the real numbers. If we used z as the independent variable, and haven’t already put x and y in, we mean the complex numbers. Sometimes we call in s or w or another letter; never mind that. The range can be the whole set of real or complex numbers. It does us no harm to have too large a range.

The domain, though. We do insist that everything in the domain match to something in the range. And, like, \frac{1}{x - 2} ? That can’t mean anything if x equals 2.

So we take an implicit definition of the domain: it’s all the real numbers for which the function’s rule is meaningful. So, \frac{1}{x - 2} would have a domain “real numbers other than 2”. \frac{6x}{(x - 2)(x + 2)} would have a domain “real numbers other than 2 and -2”.

We create extraneous solutions — or we lose some — when our convention changes the domain. An extraneous solution is one that existed outside the original problem’s domain. A missing solution is one that existed in an excised part of the domain. To go from x^2 = 4x to x = 4 by dividing out x is to cut x = 0 out of the space of possible solutions.

A complaint you might raise. What is the domain for x - 12 = \sqrt{x} ? Rewrite that as a function. f(x) = x - 12 - \sqrt{x} would seem to have a domain “x greater than or equal to 0”. The extraneous solution is x = 9 , a number which rumor has it is greater than or equal to 0. What happened?

We have to take that equation-handling more slowly. We had started out with

x - 12 = \sqrt{x}

The domain has to be “x is greater than or equal to 0” here. All right. The next step was multiplying both sides by the same quantity, x - 12 . So:

(x - 12)(x - 12) = \sqrt{x}(x - 12)

The domain is still “x is greater than or equal to 0”. The next step, though, was a substitution. I wanted to replace the (x - 12) on the right with \sqrt{x} . We know, from the original equation, that those are equal. At least, they’re equal wherever the original equation x - 12 = \sqrt{x} is true. What happens when x = 9 , though?

9 - 12 = \sqrt{9}

We start to see the catch. 9 – 12 is -3. And while it’s true that -3 squared will be 9, it’s false that -3 is the square root of 9. The equation x - 12 = \sqrt{x} can only be true, for real numbers, if \sqrt{x} is nonnegative. We can make this rigorous with two supplementary functions. Let me call g(x) = x - 12 and h(x) = \sqrt{x} .

h(x) has an implicit domain of “x greater than or equal to 0”. What’s the domain of g(x) ? If g(x) = h(x) , like we said it does, then they have to agree for every x in either’s domain. So g(x) can’t have in its domain any x for which h(x) isn’t defined. So the domain of g(x) has to be “x for which x – 12 is greater than or equal to 0”. And that’s “x greater than or equal to 12”.

So the domain for the original equation is “x greater than or equal to 12”. When we keep that domain in mind, the extraneous nature of x = 9 is clear, and we avoid trouble.

Not all extraneous solutions come from algebraic manipulations. Sometimes there are constraints on the problem, rather than the numbers, that make a solution absurd. There is a betting strategy called the martingale. This amounts to doubling the bet every time one loses. This makes the first win balance out all the losses leading to it. This solution fails because the player has a finite wallet, and after a few losses any player hasn’t got the money to continue.

Or consider a case that may be legend. It concerns the Apollo Guidance Computer. It was designed to take the Lunar Module to a spot at zero altitude above the moon’s surface, with zero velocity. The story is that in early test runs, the computer would not avoid trajectories that dropped to a negative altitude along the way to the surface. One imagines the scene after the first Apollo subway trip. (I have not found a date when such a test run was done, or corrections to the code ordered. If someone knows, I’d appreciate learning specifics.)

The convention, that we trust the domain is “everything which makes sense”, is not to blame here. It’s normally a good convention. Explicitly noting the domain at every step is tedious and, most of the time, unenlightening. It belongs in the background. We also must check our possible solutions, and that they represent things that make sense. We can try to concentrate our thinking on the obvious interesting parts, but must spend some time on the rest also.


I am surprised to be so near the end of the 2020 A-to-Z, and to 2020, I hope. This and all the other glossary essays for the year should be at this link. All the essays from every A-to-Z series should be at this link. Thank you for reading.

Reading the Comics, May 15, 2020: Squared Away Edition


The end of last week offered just a few more comic strips, and some pretty casual mathematics content. Let me wrap that up.

Daniel Beyer’s Long Story Short for the 13th has the “math department lavatory” represented as a door labelled 1 \pm 2 . It’s an interesting joke in that it reads successfully, but doesn’t make sense. To match the references to the commonly excreted substances they’d want \frac32 \pm \frac12 .

On funny labels, though, I did once visit a mathematics building in which the dry riser had the label N Bourbaki. Nicholas Bourbaki was not a member of that college’s mathematics department, of course. This is why the joke was correctly formed and therefore funny.

Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 13th features the rounding-up-sheep joke.

A frustrated Albert Einstein is at his blackboard, having tried and crossed out E = mc^3, E = mc^4, E = mc^5, E = mc^10, with some inconclusive calculations. Meanwhile a maid looks over the neat desk and declares, 'NOW that desk looks better. Everything's squared away, yessir, squaaaaaaared away.'
One of Gary Larson’s The Far Side reruns for the 14th of May, 2020. When I have the chance to write about something mentioned in The Far Side, I tag the essay so it should appear at this link.

Gary Larson’s The Far Side strips for the 14th includes the famous one of Albert Einstein coming so close to working out E = mc^2 . The usual derivations for E = mc^2 don’t start with that and then explore whether it makes sense, which is what Einstein seems to be doing here. Instead they start from some uncontroversial premises and find that they imply this E = mc^2 business. Dimensional analysis would also let you know that, if c is involved, it’s probably to the second power rather than anything else.

But that doesn’t mean we can’t imagine Einstein assuming there must be a relationship between energy and mass, finding one that makes sense, and then finding a reason it’s that rather than something else. That’s a common enough pattern of mathematical discovery. Also, a detail I hadn’t noticed before, is that Einstein tried out E = mc^3 , rejected it, and then tried it again. This is also a common pattern of discovery.

Mark Litzler’s Joe Vanilla for the 14th has a vague recollection of the Pythagorean Theorem be all that someone says he remembers of mathematics.

Niklas Eriksson’s Carpe Diem for the 15th depicts a couple ancient Greek deep-thinkers. A bit of mathematics, specifically geometry, is used as representative of that deep thinking.


This wraps up the past week’s mathematically-themed comics. Read this and next week’s comic strips at this link. Thank you.

Reading the Comics, March 20, 2020: Running from the Quiz Edition


I’m going to again start the week with the comics that casually mentioned mathematics. Later in the week I’ll have ones that open up discussion topics. I just don’t want you to miss a comic where a kid doesn’t want to do a story problem.

John Graziano’s Ripley’s Believe It or Not for the 15th mentions the Swiss mint issuing a tiny commemorative coin of Albert Einstein. I mention just because Einstein is such a good icon for mathematical physics.

Ashleigh Brilliant’s Pot-Shots for the 16th has some wordplay about multiplication and division. I’m not sure it has any real mathematical content besides arithmetic uniting multiplication and division, though.

Mark Pett’s Mr Lowe rerun for the 17th has the students bored during arithmetic class. Fractions; of course it would be fractions.

Justin Boyd’s Invisible Bread for the 18th> has an exhausted student making the calculation of they’ll do better enough after a good night’s sleep to accept a late penalty. This is always a difficult calculation to make, since you make it when your thinking is clouded by fatigue. But: there is no problem you have which sleep deprivation makes better. Put sleep first. Budget the rest of your day around that. Take it from one who knows and regrets a lot of nights cheated of rest. (This seems to be the first time I’ve mentioned Invisible Bread around here. Given the strip’s subject matter that’s a surprise, but only a small one.)

John Deering’s Strange Brew for the 18th is an anthropomorphic-objects strip, featuring talk about mathematics phobia.

One of Gary Larson’s The Far Side reruns for the 19th is set in a mathematics department, and features writing a nasty note “in mathematics”. There are many mathematical jokes, some of them written as equations. A mathematician will recognize them pretty well. None have the connotation of, oh, “Kick Me” or something else that would belong as a prank sign like that. Or at least nobody’s told me about them.

Tauhid Bondia’s Crabgrass for the 20th sees Kevin trying to find luck ahead of the mathematics quiz.

Bob Weber Jr and Jay Stephens’s Oh, Brother! for the 20th similarly sees Bud fearing a mathematics test.


Thanks for reading. And, also, please remember that I’m hosting the Playful Math Education Blog Carnival later this month. Please share with me any mathematics stuff you’ve run across that teaches or entertains or more.

Reading the Comics, March 14, 2020: Pi Day Edition


Pi Day was observed with fewer, and fewer on-point, comic strips than I had expected. It’s possible that the whimsy of the day has been exhausted. Or that Comic Strip Master Command advised people that the educational purposes of the day were going to be diffused because of the accident of the calendar. And a fair number of the strips that did run in the back half of last week weren’t substantial. So here’s what did run.

Gary Wise and Lance Aldrich’s Real Life Adventures for the 12th has a parent complaining about kids being allowed to use calculators to do mathematics. The rejoinder, asking how good they were at mathematics anyway, is a fair one.

Bill Watterson’s Calvin and Hobbes rerun for the 13th sees Calvin avoiding his mathematics homework. The strip originally ran the 16th of March, 1990.

And now we get to the strips that actually ran on the 14th of March.

Gracie, to her father: 'If I had $1.39 for every time I've struggled with a mathematics problem ... I'd have ... ' (She taps on a calculator) '6.23 cents.'
Hector D Cantú and Carlos Castellanos’s Baldo for the 14th of March, 2020. Essays with some mention of Baldo are gathered at this link.

Hector D Cantú and Carlos Castellanos’s Baldo is a slightly weird one. It’s about Gracie reflecting on how much she’s struggled with mathematics problems. There are a couple pieces meant to be funny here. One is the use of oddball numbers like 1.39 or 6.23 instead of easy-to-work-with numbers like “a dollar” or “a nickel” or such. The other is that the joke is .. something in the vein of “I thought I was wrong once, but I was mistaken”. Gracie’s calculation indicates she thinks she’s struggled with a math problem a little under 0.045 times. It’s a peculiar number. Either she’s boasting that she struggles very little with mathematics, or she’s got her calculations completely wrong and hasn’t recognized it. She’s consistently portrayed as an excellent student, though. So the “barely struggles” or maybe “only struggles a tiny bit at the start of a problem” interpretation is more likely what’s meant.

Mark Parisi’s Off the Mark is a Pi Day joke that actually features π. It’s also one of the anthropomorphic-numerals variety of jokes. I had also mistaken it for a rerun. Parisi’s used a similar premise in previous Pi Day strips, including one in 2017 with π at the laptop.

An anthropomorphic pi at a laptop, facing a web page demanding, 'Enter your full name'. It's gotten through 26 digits past the decimal.
Mark Parisi’s Off The Mark for the 14th of March, 2020. Other essays featuring something raised by Off The Mark, including a fair number of Pi Day jokes, are at this link.

π has infinitely many decimal digits, certainly. Of course, so does 2. It’s just that 2 has boring decimal digits. Rational numbers end up repeating some set of digits. It can be a long string of digits. But it’s finitely many, and compared to an infinitely long and unpredictable string, what’s that? π we know is a transcendental number. Its decimal digits go on in a sequence that never ends and never repeats itself fully, although finite sequences within it will repeat. It’s one of the handful of numbers we find interesting for reasons other than their being transcendental. This though nearly every real number is transcendental. I think any mathematician would bet that it is a normal number, but we don’t know that it is. I’m not aware of any numbers we know to be normal and that we care about for any reason other than their normality. And this, weirdly, also despite that we know nearly every real number is normal.

At the ATM, a pie with arms enters a pin. An onlooking doughnut says '3.14? Please tell me that's not really your pin.'
Dave Whamond’s Reality Check for the 14th of March, 2020. Essays that show off something from a Reality Check panel are at this link.

Dave Whamond’s Reality Check plays on the pun between π and pie, and uses the couple of decimal digits of π that most people know as part of the joke. It’s not an anthropomorphic numerals joke, but it is circling that territory.

Loose sketch of Albert Einstein, accompanied by the quote, 'Only two things are infinite: the universe and human stupidity, and I'm not sure about the former', along with a note wishing him a happy birthday.
Michael Cavna’s Warped for the 14th of March, 2020. The rare appearances here of Warped are gathered at this link.

Michael Cavna’s Warped celebrates Albert Einstein’s birthday. This is of marginal mathematics content, but Einstein did write compose one of the few equations that an average lay person could be expected to recognize. It happens that he was born the 14th of March and that’s, in recent years, gotten merged into Pi Day observances.


I hope to start discussing this week’s comic strips in some essays starting next week, likely Sunday. Thanks for reading.

Reading the Comics, January 26, 2019: The Week Ended Early Edition


Last week started out at a good clip: two comics with enough of a mathematical theme I could imagine writing a paragraph about them each day. Then things puttered out. The rest of the week had almost nothing. At least nothing that seemed significant enough. I’ll list those, since that’s become my habit, at the end of the essay.

Jonathan Lemon and Joey Alison Sayers’s Alley Oop for the 20th is my first chance to show off the new artist and writer team. They’ve decided to make Sunday strips a side continuity about a young Alley Oop and his friends. I’m interested. The strip is built on the bit of pop anthropology that tells us “primitive” tribes will have very few counting words. That you can express concepts like one, two, and three, but then have to give up and count “many”.

Little Alley Oop: 'You think scientists will ever invent a number bigger than three?' Garg: 'I guess it's possible. There are three scientists working around the clock trying to come up with a new number.' Oop: 'Three scientists? Wow! That's a lot.' Garg: 'Maybe someday *we'll* be scientists. Then there'll be *three* scientists.' Oop: 'Nah, I think I want to be a fire-fighter. There are only three of those in the whole world.'
Jonathan Lemon and Joey Alison Sayers’s Alley Oop for the 20th of January, 2019. I don’t seem to have had much cause to mention Alley Oop before; the only previous reference I can find is in this cameo in a different comic. Well, this and any other essays that write about Alley Oop at any length should be at this link. I don’t figure to differentiate between the weekday Alley Oop strip and the Sunday Little Oop line in using this tag.

Perhaps it’s so. Some societies have been found to have, what seem to us, rather few numerals. This doesn’t reflect on anyone’s abilities or intelligence or the like. And it doesn’t mean people who lack a word for, say, “forty-nine” would be unable to compute. It might take longer, but probably just from inexperience. If someone practiced much calculation on “forty-nine” they’d probably have a name for it. And folks raised in the western mathematics use, even enjoy, some vagueness about big numbers too. We might say there are “dozens” of a thing even if there are not precisely 24, 36, or 48 of the thing; “52” is close enough and we probably didn’t even count it up. “Hundred” similarly has gotten the connotation of being a precise number, but it’s used to mean “really quite a lot of a thing”. The words “thousands”, “millions”, and mock-numbers like “zillions” have a similar role. They suggest different ranges of what might be “many”.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 20th is a SABRmetrics joke! At least, it’s an optimization joke, built on the idea that you can find an optimum strategy for anything, whether winning baseball games or The War. The principle is hard to argue with. Nobody would doubt that different approaches to a battle affect how likely winning is. We can imagine gathering data on how different tactics affect the outcome. (We can easily imagine combat simulators running these experiments, particularly.)

War party stats nerd: 'We are taking a statistical approach combat. First, don't go for kills. Go for *stabs*. Successful stabs are *much* more valuable to victory than lethal strikes. Look at Birk over here. He averages 22.1 stabs per battle. He alone accounts for an additional 3.8 wins per campaign season. Siegwurst brings in 1.6.' Skeptic: 'But remember when Siegwurst slew two Cossacks with his Dance of the Whirling Blades?' Stats Nerd: 'NO MORE READING THE SAGAS, OK? No spin moves! They're impressive but the expected addition wins per spin is negative. NEGATIVE.' Skeptic :'This is gonna have serious negative effects on morale.' Stats nerd: 'Which correlates with EXACTLY NOTHING. Now GET STABBY!'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 20th of January, 2019. Pretty much every Reading the Comics brings up this strip. But the essays that specifically mention Saturday Morning Breakfast Cereal should be at this link.

The catch — well, one catch — is that this tempts one to reward a process. Once it’s taken for granted the process works, then whether it’s actually doing what you want gets forgotten. And once everyone knows what’s being measured it becomes possible to game the system. Famously, in the mid-1960s the United States tried to judge its progress in the Vietnam War by counting the number of enemy soldiers killed. There was then little reason to care about who was killed, or why. And reason to not care whether actual enemy soldiers were being killed. There’s good to be said about testing whether the things you try to do work. There’s great danger in thinking that the thing you can measure guarantees success.

Mark Anderson’s Andertoons for the 21st is a bit of fun with definitions. Mathematicians rely on definitions. It’s hard to imagine a proof about something undefined. But definitions are hard to compose. We usually construct a definition because we want a common term to describe a collection of things, and to exclude another collection of things. And we need people like Wavehead who can find edge cases, things that seem to satisfy a definition while breaking its spirit. This can let us find unstated assumptions that we should pay attention to. Or force us to accept that the definition is so generally useful that we’ll tolerate it having some counter-intuitive implications.

On the blackboard: 'NOT A POLYGON: Fewer than three sides; not connected at ends; lines that cross.' Teacher, to student: 'True, a chicken nugget is also not a polygon, but we're going to focus more on lines and vertices.'
Mark Anderson’s Andertoons for the 21st of January, 2019. Pretty much every Reading the Comics brings up this strip, at least since last fall’s weird gap has ended. But the essays that specifically mention Andertoons should be at this link.

My favorite counter-intuitive implication is in analysis. The field has a definition for what it means that a function is continuous. It’s meant to capture the idea that you could draw a curve representing the function without having to lift the pen that does it. The best definition mathematicians have settled on allows you to count a function that’s continuous at a single point in all of space. Continuity seems like something that should need an interval to happen. But we haven’t found a better way to define “continuous” that excludes this pathological case. So we embrace the weirdness in exchange for general usefulness.

Princess Kat, awestruck at soap bubbles: 'How did you do that, Jackson? Are you a wizard?' Jackson: 'They're just bubbles. You dunk this wand into a cup of soapy water and then blow through it.' Kat: 'Gimme gimme! I wanna blow bubbles too!' Jackson: 'Just take it easy or they'll pop! It's pretty simple.' (Kat blows a soap bubble cube, then tetrahedron and cones and some optical illusion shapes.) Kat: 'I think I'm doing this wrong.' Jackson: 'Suddenly I feel like a round peg in a square hole.'
Charles Brubaker’s Ask A Cat for the 21st of January, 2019. Although I’ve mentioned this comic before, it wasn’t when I was putting up tags naming each comic. I’ll fix that now. This and future essays mentioning Ask A Cat (or its Fuzzy Princess sideline, as long as that hasn’t got its own GoComics presence) should appear at this link. And this strip previously ran the 19th of June, 2016.

Charles Brubaker’s Ask A Cat for the 21st is a guest appearance from Brubaker’s other strip, The Fuzzy Princess. It’s a rerun and I did discuss it earlier. Soap bubbles make for great mathematics. They’re easy to play with, for one thing. That’s good for capturing imagination. And the mathematics behind them is deep, and led to important results analytically and computationally. It happens when this strip first ran I’d encountered a triplet of essays about the mathematics of soap bubbles and wireframe surfaces. My introduction to those essays is here.

Benita Epstein’s Six Chix for the 25th I wasn’t sure I’d include. But Roy Kassinger asked about it, so that tipped the scales. The dog tries to blame his bad behavior on “the algorithm”, bringing up one of the better monsters of the last couple years. An algorithm is just the procedure by which you do something. Mathematically, that’s usually to solve a problem. That might be finding some interesting part of the domain or range of a function. That might be putting a collection of things in order. that might be any of a host of things. And then we go make a decision based on the results of the algorithm.

Dog, explaining a messy room to its horrified humans: 'The algorithm made me do it!'
Benita Epstein’s Six Chix for the 25th of January, 2019. The essays wherein I mention Six Chix, from any of the shared strip’s authors, should appear at this link.

What earns The Algorithm its deserved bad name is mindlessness. The idea that once you have an algorithm that a problem is solved. Worse, that once an algorithm is in place it would be irrational to challenge it. I have seen the process termed “mathwashing”, by analogy with whitewashing, and it’s a good one. The notion that because something is done by computer it must be done correctly is absurd. We knew it was absurd before there were computers as we knew them, as see anyone for the past century who has spoken of a “Kafkaesque” interaction with a large organization. It’s impossible to foresee all the outcomes of any reasonably complicated process, much less to verify that all the outcomes are handled correctly. This is before we consider that there will always be mistakes made in the handling of data. Or in the carrying out of the process. And that’s before we consider bad actors. I’m sure there must be research into algorithms designed to handle gaming of the system. I don’t know that there are any good results yet, though. We certainly need them.


There were a couple comics that didn’t seem to be substantial enough for me to write at length about. You might like them anyway. Connie Sun’s Connie to the Wonnie for the 21st shows off a Venn Diagram. Hector D Cantú and Carlos Castellanos’s Baldo for the 23rd is a bit of wordplay about what mathematicians do. Jonathan Lemon’s Rabbits Against Magic for the 23rd similarly is a bit of wordplay built around percentages. (Lemon is the new artist for Alley Oop.) And Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips features Albert Einstein, and a joke based on one of the symmetries which make relativity such a useful explanation of the world’s workings.


I don’t plan to have another Reading the Comics post until next Sunday. But when I do, it’ll be here.

Reading the Comics, January 9, 2018: Be Squared Edition


It wasn’t just another busy week from Comic Strip Master Command. And a week busy enough for me to split the mathematics comics into two essays. It was one where I recognized one of the panels as one I’d featured before. Multiple times. Some of the comics I feature are in perpetual reruns and don’t have your classic, deep, Peanuts-style decades of archives to draw from. I don’t usually go checking my archives to see if I’ve mentioned a comic before, not unless something about it stands out. So for me to notice I’ve seen this strip repeatedly can mean only one thing: there was something a little bit annoying about it. Recognize it yet? You will.

Hy Eisman’s Popeye for the 7th of January, 2018 is an odd place for mathematics to come in. J Wellington Wimpy regales Popeye with all the intellectual topics he tried to impress his first love with, and “Euclidean postulates in the original Greek” made the cut. And, fair enough. Euclid’s books are that rare thing that’s of important mathematics (or scientific) merit and that a lay person can just pick up and read, even for pleasure. These days we’re more likely to see a division between mathematics writing that’s accessible but unimportant (you know, like, me) or that’s important but takes years of training to understand. Doing it in the original Greek is some arrogant showing-off, though. Can’t blame Carolyn for bailing on someone pulling that stunt.

Popeye: 'Did ya ever think of gittin' hitched?' Wimpy: 'Many times! I didn't plan to be a bachelor. In fact, my first love was Carolyn. While we dined on burgers at Roughhouse's she listened to my discourse on Schopenhauer, followed by my chat that included both Kafka and Camus. Then, as I walked her home, I recited Euclidean postulates in the original Greek!' Popeye: 'Y'wuz really on a roll!' Wimpy: 'When we got to her door she said, 'Wimpy, it's been a perfect evening. Please don't spoil it by EVER asking me out again!''.
Hy Eisman’s Popeye for the 7th of January, 2018. Why does Wimpy’s shirt have a belly button?

Mark O’Hare’s Citizen Dog rerun for the 7th continues last essay’s storyline about Fergus taking Maggie’s place at school. He’s having trouble understanding the story within a story problem. I sympathize.

John Hambrock’s The Brilliant Mind of Edison Lee for the 8th is set in mathematics class. And Edison tries to use a pile of mathematically-tinged words to explain why it’s okay to read a Star Wars book instead of paying attention. Or at least to provide a response the teacher won’t answer. Maybe we can make something out of this by allowing the monetary value of something to be related to its relevance. But if we allow that then Edison’s messed up. I don’t know what quantity is measured by multiplying “every Star Wars book ever written” by “all the movies and merchandise”. But dividing that by the value of the franchise gets … some modest number in peculiar units divided by a large number of dollars. The number value is going to be small. And the dimensions are obviously crazy. Edison needs to pay better attention to the mathematics.

Teacher: 'Mister Lee, what are you reading?' Edison Lee: 'The Legends of Luke Skywalker.' Teacher: 'Ah, and how would that be relevant to this math class?' Edison: 'If you take every Star Wars book ever written, multiply them by all the movies and merchandise, and divide that by the net worth of the franchise, you have a small fortune of relevance.' (Teacher looks away.) Edison thinks: 'My mouth needs a seven-second broadcast delay.'
John Hambrock’s The Brilliant Mind of Edison Lee for the 8th of January, 2018. No, I haven’t got any idea how the third panel leads to the fourth. I mean, I know what should lead from there to there — a moment of Edison realizing he’s said something so impolitic he can’t carry on — but that moment isn’t there. The teacher seems to just shrug the whole nonsense off. Something went wrong in the composing of the joke.

Johnny Hart’s B.C. for the 14th of July, 1960 shows off the famous equation of the 20th century. All part of the comic’s anachronism-comedy chic. The strip reran the 9th of January. “E = mc2” is, correctly, associated with Albert Einstein and some of his important publications of 1905. But the expression does have some curious precursors, people who had worked out the relationship (or something close to it) before Einstein and who didn’t quite know what they had. A short piece from Scientific American a couple years back describes pre-Einstein expressions of the equation from Oliver Heaviside, Henri Poincaré, and Fritz Hasenöhrl. I’m not surprised Poincaré had something close to this; it seems like he spent twenty years almost discovering Relativity. That’s all right; he did enough in dynamical systems that mathematicians aren’t going to forget him.

Tim Lachowski’s Get A Life for the 9th is at least the fourth time I’ve seen this panel since I started doing Reading the Comics posts regularly. (Previous times: the 5th of November, 2012 and the 10th of March, 2015 and the 14th of July, 2016.) I’m like this close to concluding the strip’s in perpetual rerun and I can drop it from my daily reading.

Jason Chatfield’s Ginger Meggs for the 9th draws my eye just because the blackboard lists “Prime Numbers”. Fair enough place setting, although what’s listed are 1, 3, 5, and 7. These days mathematicians don’t tend to list 1 as a prime number; it’s inconvenient. (A lot of proofs depend on their being exactly one way to factorize a number. But you can always multiply a number by ‘1’ a couple more times without changing its value. So ‘6’ is 3 times 2, but it’s also 3 times 2 times 1, or 3 times 2 times 1 times 1, or 3 times 2 times 1145,388,434,247. You can write around that, but it’s easier to define ‘1’ as not a prime.) But it could be defended. I can’t think any reason to leave ‘2’ off a list of prime numbers, though. I think Chatfield conflated odd and prime numbers. If he’d had a bit more blackboard space we could’ve seen whether the next item was 9 or 11 and that would prove the matter.

Paul Trap’s Thatababy for the 9th uses arithmetic — square roots — as the kind of thing to test whether a computer’s working. Everyone has their little tests like this. My love’s father likes to test whether the computer knows of the band Walk The Moon or of Christine Korsgaard (a prominent philosopher in my love’s specialty). I’ve got a couple words I like to check dictionaries for. Of course the test is only any good if you know what the answer should be, and what’s the actual square root of 3,278? Goodness knows. It’s got to be between 50 (50 squared is 25 hundred) and 60 (60 squared is 36 hundred). Since 3,278 is so much closer 3,600 than 2,500 its square root should be closer to 60 than to 50. So 57-point-something is plausible. Unfortunately square roots don’t lend themselves to the same sorts of tricks from reading the last digit that cube roots do. And 3,278 isn’t a perfect square anyway. Alexa is right on this one. Also about the specific gravity of cobalt, at least if Wikipedia is right and not conspiring with the artificial intelligences on this one. Catch you in 2021.

Charles Schulz’s Peanuts for the 8th of October, 1953, is about practical uses of mathematics. It got rerun on the 9th of January.

Reading the Comics, December 11, 2017: Vamping For Andertoons Edition


So Mark Anderson’s Andertoons has been missing from the list of mathematically-themed the last couple weeks. Don’t think I haven’t been worried about that. But it’s finally given another on-topic-enough strip and I’m not going to include it here. I’ve had a terrible week and I’m going to use the comics we got in last week slowly.

Hector D Cantu and Carlos Castellanos’s Baldo for the 10th of December uses algebra as the type for homework you’d need help with. It reads plausibly enough to me, at least so far as I remember learning algebra.

Greg Evans’s Luann Againn for the 10th reprints the strip of the 10th of December, 1989. And as often happens, mathematics is put up as the stuff that’s too hard to really do. The expressions put up don’t quite parse; there’s nothing to solve. But that’s fair enough for a panicked brain. To not recognize what the problem even is makes it rather hard to solve.

Ruben Bolling’s Super-Fun-Pak Comix for the 10th is an installation of Quantum Mechanic, playing on the most fun example of non-commutative processes I know. That’s the uncertainty principle, which expresses itself as pairs of quantities that can’t be precisely measured simultaneously. There are less esoteric kinds of non-commutative processes. Like, rotating something 90 degrees along a horizontal and then along a vertical axis will turn stuff different from 90 degrees vertical and then horizontal. But that’s too easy to understand to capture the imagination, at least until you’re as smart as an adult and as thoughtful as a child.

Maria Scrivan’s Half Full for the 11th features Albert Einstein and one of the few equations that everybody knows. So that’s something.

Jeff Stahler’s Moderately Confused for the 11th features the classic blackboard full of equations, this time to explain why Christmas lights wouldn’t work. There is proper mathematics in lights not working. It’s that electrical-engineering work about the flow of electricity. The problem is, typically, a broken or loose bulb. Maybe a burnt-out fuse, although I have never fixed a Christmas lights problem by replacing the fuse. It’s just something to do so you can feel like you’ve taken action before screaming in rage and throwing the lights out onto the front porch. More interesting to me is the mathematics of strands getting tangled. The idea — a foldable thread, marked at regular intervals by points that can hook together — seems trivially simple. But it can give insight into how long molecules, particularly proteins, will fold together. It may help someone frustrated to ponder that their light strands are knotted for the same reasons life can exist. But I’m not sure it ever does.

Reading the Comics, October 12, 2017: Busy Saturday Soon Edition


The week was looking ready to be one where I have my five paragraphs about how something shows off a word problem and that’s it. And then Comic Strip Master Command turned up the flow of comics for Saturday. So, here’s my five paragraphs about something being word problems and we’ll pick up the other half of them soon.

Bill Whitehead’s Free Range for the 10th is an Albert Einstein joke. That’s usually been enough. That it mentions curved space, the exotic geometries that make general relativity so interesting, gives it a little more grounding as a mathematical comic. It’s a bit curious, surely, that curved space strikes people as so absurd. Nobody serious argues whether we live on a curved space, though, not when we see globes and think about shapes that cover a big part of the surface of the Earth. But there is something different about thinking of three-dimensional space as curved; it’s hard to imagine curved around what.

Brian Basset’s Red and Rover started some word problems on the 11th, this time with trains travelling in separate directions. The word problem seemed peculiar, since the trains wouldn’t be 246 miles apart at any whole number of hours. But they will be at a reasonable fraction more than a whole number of hours, so I guess Red has gotten to division with fractions.

Red and Rover are back at it the 12th with basically the same problem. This time it’s with airplanes. Also this time it’s a much worse problem. While you can do the problem still, the numbers are uglier. It’ll be just enough over two hours and ten minutes that I wonder if the numbers got rewritten away from some nicer set. For example, if the planes had been flying at 360 and 540 miles per hour, and the question was when they would be 2,100 miles apart, then you’d have a nice two-and-a-third hours.

'Todd, don't be anxious about your fractions homework! I can make it easy to understand! Let's say you have a whole pie!' 'Oooh! Pie!' 'In order to have three-quarters of the pie, how much of the pie will you give to me?' 'NONE! YOU CAN'T HAVE ANY! THE PIE IS MINE! MINE! ALL MINE!' 'The answer is 'don't use pie in your word problems'.'
Patrick Roberts’s Todd the Dinosaur for the 12th of October, 2017. And I for one am totally convinced the first and second panels were independently drawn and weren’t just a copy-pasted panel with some editing on Todd’s mouth and the woman’s arm. Also the last panel isn’t the first two panels copied and slightly edited again.

Patrick Roberts’s Todd the Dinosaur for the 12th is another in the line of jokes about fraction-teaching going wrong by picking a bad example.

John Zakour and Scott Roberts’s Maria’s Day for the 12th uses mathematics as the iconic worst-possible-case for a pop quiz. I suppose spelling might have done too.

Reading the Comics, October 4, 2017: Time-Honored Traditions Edition


It was another busy week in mathematically-themed comic strips last week. Busy enough I’m comfortable rating some as too minor to include. So it’s another week where I post two of these Reading the Comics roundups, which is fine, as I’m still recuperating from the Summer 2017 A To Z project. This first half of the week includes a lot of rerun comics, and you’ll see why my choice of title makes sense.

Lincoln Pierce’s Big Nate: First Class for the 1st of October reprints the strip from the 2nd of October, 1993. It’s got a well-formed story problem that, in the time-honored tradition of this setup, is subverted. I admit I kind of miss the days when exams would have problems typed out in monospace like this.

Ashleigh Brilliant’s Pot-Shots for the 1st is a rerun from sometime in 1975. And it’s an example of the time-honored tradition of specifying how many statistics are made up. Here it comes in at 43 percent of statistics being “totally worthless” and I’m curious how the number attached to this form of joke changes over time.

The Joey Alison Sayers Comic for the 2nd uses a blackboard with mathematics — a bit of algebra and a drawing of a sphere — as the designation for genius. That’s all I have to say about this. I remember being set straight about the difference between ponies and horses and it wasn’t by my sister, who’s got a professional interest in the subject.

Mark Pett’s Lucky Cow rerun for the 2nd is a joke about cashiers trying to work out change. As one of the GoComics.com commenters mentions, the probably best way to do this is to count up from the purchase to the amount you have to give change for. That is, work out $12.43 to $12.50 is seven cents, then from $12.50 to $13.00 is fifty more cents (57 cents total), then from $13.00 to $20.00 is seven dollars ($7.57 total) and then from $20 to $50 is thirty dollars ($37.57 total).

It does make me wonder, though: what did Neil enter as the amount tendered, if it wasn’t $50? Maybe he hit “exact change” or whatever the equivalent was. It’s been a long, long time since I worked a cash register job and while I would occasionally type in the wrong amount of money, the kinds of errors I would make would be easy to correct for. (Entering $30 instead of $20 for the tendered amount, that sort of thing.) But the cash register works however Mark Pett decides it works, so who am I to argue?

Keith Robinson’s Making It rerun for the 2nd includes a fair bit of talk about ratios and percentages, and how to inflate percentages. Also about the underpaying of employees by employers.

Mark Anderson’s Andertoons for the 3rd continues the streak of being Mark Anderson Andertoons for this sort of thing. It has the traditional form of the student explaining why the teacher’s wrong to say the answer was wrong.

Brian Fies’s The Last Mechanical Monster for the 4th includes a bit of legitimate physics in the mad scientist’s captioning. Ballistic arcs are about a thing given an initial speed in a particular direction, moving under constant gravity, without any of the complicating problems of the world involved. No air resistance, no curvature of the Earth, level surfaces to land on, and so on. So, if you start from a given height (‘y0‘) and a given speed (‘v’) at a given angle (‘θ’) when the gravity is a given strength (‘g’), how far will you travel? That’s ‘d’. How long will you travel? That’s ‘t’, as worked out here.

(I should maybe explain the story. The mad scientist here is the one from the first, Fleischer Studios, Superman cartoon. In it the mad scientist sends mechanical monsters out to loot the city’s treasures and whatnot. As the cartoon has passed into the public domain, Brian Fies is telling a story of that mad scientist, finally out of jail, salvaging the one remaining usable robot. Here, training the robot to push aside bank tellers has gone awry. Also, the ground in his lair is not level.)

Tom Toles’s Randolph Itch, 2 am rerun for the 4th uses the time-honored tradition of Albert Einstein needing a bit of help for his work.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 4th uses the time-honored tradition of little bits of physics equations as designation of many deep thoughts. And then it gets into a bit more pure mathematics along the way. It also reflects the time-honored tradition of people who like mathematics and physics supposing that those are the deepest and most important kinds of thoughts to have. But I suppose we all figure the things we do best are the things it’s important to do best. It’s traditional.

And by the way, if you’d like more of these Reading the Comics posts, I put them all in the category ‘Comic Strips’ and I just now learned the theme I use doesn’t show categories for some reason? This is unsettling and unpleasant. Hm.

Reading the Comics, August 17, 2017: Professor Edition


To close out last week’s mathematically-themed comic strips … eh. There’s only a couple of them. One has a professor-y type and another has Albert Einstein. That’s enough for my subject line.

Joe Martin’s Mr Boffo for the 15th I’m not sure should be here. I think it’s a mathematics joke. That the professor’s shown with a pie chart suggests some kind of statistics, at least, and maybe the symbols are mathematical in focus. I don’t know. What the heck. I also don’t know how to link to these comics that gives attention to the comic strip artist. I like to link to the site from which I got the comic, but the Mr Boffo site is … let’s call it home-brewed. I can’t figure how to make it link to a particular archive page. But I feel bad enough losing Jumble. I don’t want to lose Joe Martin’s comics on top of that.

Professor, by a pie chart, reading a letter: 'Dear Professor: We are excited about your new theory. Would you build us a prototype? And how much would you charge for each slice? - Sara Lee.'
Joe Martin’s Mr Boffo for the 15th of August, 2017. I am curious what sort of breakthrough in pie-slicing would be worth the Sara Lee company’s attention. Occasionally you’ll see videos of someone who cuts a pie (or cake or whatever) into equal-area slices using some exotic curve, but that’s to show off that something can be done, not that something is practical.

Charlie Podrebarac’s meat-and-Elvis-enthusiast comic Cow Town for the 15th is captioned “Elvis Disproves Relativity”. Of course it hasn’t anything to do with experimental results or even a good philosophical counterexample. It’s all about the famous equation. Have to expect that. Elvis Presley having an insight that challenges our understanding of why relativity should work is the stuff for sketch comedy, not single-panel daily comics.

Paul Trap’s Thatababy for the 15th has Thatadad win his fight with Alexa by using the old Star Trek Pi Gambit. To give a computer an unending task any number would work. Even the decimal digits of, say, five would do. They’d just be boring if written out in full, which is why we don’t. But irrational numbers at least give us a nice variety of digits. We don’t know that Pi is normal, but it probably is. So there should be a never-ending variety of what Alexa reels out here.

By the end of the strip Alexa has only got to the 55th digit of Pi after the decimal point. For this I use The Pi-Search Page, rather than working it out by myself. That’s what follows the digits in the second panel. So the comic isn’t skipping any time.

Gene Mora’s Graffiti for the 16th, if you count this as a comic strip, includes a pun, if you count this as a pun. Make of it what you like.

Mark Anderson’s Andertoons for the 17th is a student-misunderstanding-things problem. That’s a clumsy way to describe the joke. I should look for a punchier description, since there are a lot of mathematics comics that amount to the student getting a silly wrong idea of things. Well, I learned greater-than and less-than with alligators that eat the smaller number first. Though they turned into fish eating the smaller number first because who wants to ask a second-grade teacher to draw alligators all the time? Cartoon goldfish are so much easier.

Reading the Comics, July 8, 2017: Mostly Just Pointing Edition


Won’t lie: I was hoping for a busy week. While Comic Strip Master Command did send a healthy number of mathematically-themed comic strips, I can’t say they were a particularly deep set. Most of what I have to say is that here’s a comic strip that mentions mathematics. Well, you’re reading me for that, aren’t you? Maybe. Tell me if you’re not. I’m curious.

Richard Thompson’s Cul de Sac rerun for the 2nd of July is the anthropomorphic numerals joke for the week. And a great one, as I’d expect of Thompson, since it also turns into a little bit about how to create characters.

Ralph Dunagin and Dana Summers’s Middletons for the 2nd uses mathematics as the example of the course a kid might do lousy in. You never see this for Social Studies classes, do you?

Mark Tatulli’s Heart of the City for the 3rd made the most overtly mathematical joke for most of the week at Math Camp. The strip hasn’t got to anything really annoying yet; it’s mostly been average summer-camp jokes. I admit I’ve been distracted trying to figure out if the minor characters are Tatulli redrawing Peanuts characters in his style. I mean, doesn’t Dana (the freckled girl in the third panel, here) look at least a bit like Peppermint Patty? I’ve also seen a Possible Marcie and a Possible Shermy, who’s the Peanuts character people draw when they want an obscure Peanuts character who isn’t 5. (5 is the Boba Fett of the Peanuts character set: an extremely minor one-joke character used for a week in 1963 but who appeared very occasionally in the background until 1983. You can identify him by the ‘5’ on his shirt. He and his sisters 3 and 4 are the ones doing the weird head-sideways dance in A Charlie Brown Christmas.)

Mark Pett’s Lucky Cow rerun for the 4th is another use of mathematics, here algebra, as a default sort of homework assignment.

Brant Parker and Johnny Hart’s Wizard of Id Classics for the 4th reruns the Wizard of Id for the 7th of July, 1967. It’s your typical calculation-error problem, this about the forecasting of eclipses. I admit the forecasting of eclipses is one of those bits of mathematics I’ve never understood, but I’ve never tried to understand either. I’ve just taken for granted that the Moon’s movements are too much tedious work to really enlighten me and maybe I should reevaluate that. Understanding when the Moon or the Sun could be expected to disappear was a major concern for people doing mathematics for centuries.

Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 5th is a Special Relativity joke, which is plenty of mathematical content for me. I warned you it was a week of not particularly deep discussions.

Ashleigh Brilliant’s Pot-Shots rerun for the 5th is a cute little metric system joke. And I’m going to go ahead and pretend that’s enough mathematical content. I’ve come to quite like Brilliant’s cheerfully despairing tone.

Jason Chatfield’s Ginger Meggs for the 7th mentions fractions, so you can see how loose the standards get around here when the week is slow enough.

Snuffy Smith: 'I punched Barlow 'cuz I knew in all probability he wuz about to punch me, yore honor!!' Judge: 'Th' law don't deal in probabilities, Smif, we deal in CERTAINTIES!!' Snuffy, to his wife: '... An' th'minute he said THAT, I was purty CERTAIN whar I wuz headed !!'
John Rose’s Barney Google and Snuffy Smith for the 8th of July, 2017. So I know it’s a traditional bit of comic strip graphic design to avoid using a . at the end of sentences, as it could be too easily lost — or duplicated — in a printing error. Thus the long history of comic strip sentences that end with a ! mark, unambiguous even if the dot goes missing or gets misaligned. But double exclamation points for everything? What goes on here?

John Rose’s Barney Google and Snuffy Smith for the 8th finally gives me a graphic to include this week. It’s about the joke you would expect from the topic of probability being mentioned. And, as might be expected, the comic strip doesn’t precisely accurately describe the state of the law. Any human endeavour has to deal with probabilities. They give us the ability to have reasonable certainty about the confusing and ambiguous information the world presents.

Einstein At Eight: equations scribbled all over the wall. Einstein Mom: 'Just look at what a mess you made here!' Einstein Dad: 'You've got some explaining to do, young man.'
Vic Lee’s Pardon My Planet for the 8th of July, 2017. I gotta say, I look at that equation in the middle with m raised to the 7th power and feel a visceral horror. And yet I dealt with exactly this horrible thing once and it came out all right.

Vic Lee’s Pardon My Planet for the 8th is another Albert Einstein mention. The bundle of symbols don’t mean much of anything, at least not as they’re presented, but of course superstar equation E = mc2 turns up. It could hardly not.

Reading the Comics, March 6, 2017: Blackboards Edition


I can’t say there’s a compelling theme to the first five mathematically-themed comics of last week. Screens full of mathematics turned up in a couple of them, so I’ll run with that. There were also just enough strips that I’m splitting the week again. It seems fair to me and gives me something to remember Wednesday night that I have to rush to complete.

Jimmy Hatlo’s Little Iodine for the 1st of January, 1956 was rerun on the 5th of March. The setup demands Little Iodine pester her father for help with the “hard homework” and of course it’s arithmetic that gets to play hard work. It’s a word problem in terms of who has how many apples, as you might figure. Don’t worry about Iodine’s boss getting fired; Little Iodine gets her father fired every week. It’s their schtick.

Little Iodine wakes her father early after a night at the lodge. 'You got to help me with my [hard] homework.' 'Ooh! My head! Wha'?' 'The first one is, if John has twice as many apples as Tom and Sue put together ... ' 'Huh? kay! Go on, let's get this over with.' They work through to morning. Iodine's teacher sees her asleep in class and demands she bring 'a note from your parents as to why you sleep in school instead of at home!' She goes to her father's office where her father's boss is saying, 'Well, Tremblechin, wake up! The hobo hotel is three blocks south and PS: DON'T COME BACK!'
Jimmy Hatlo’s Little Iodine for the 1st of January, 1956. I guess class started right back up the 2nd, but it would’ve avoided so much trouble if she’d done her homework sometime during the winter break. That said, I never did.

Dana Simpson’s Phoebe and her Unicorn for the 5th mentions the “most remarkable of unicorn confections”, a sugar dodecahedron. Dodecahedrons have long captured human imaginations, as one of the Platonic Solids. The Platonic Solids are one of the ways we can make a solid-geometry analogue to a regular polygon. Phoebe’s other mentioned shape of cubes is another of the Platonic Solids, but that one’s common enough to encourage no sense of mystery or wonder. The cube’s the only one of the Platonic Solids that will fill space, though, that you can put into stacks that don’t leave gaps between them. Sugar cubes, Wikipedia tells me, have been made only since the 19th century; the Moravian sugar factory director Jakub Kryštof Rad got a patent for cutting block sugar into uniform pieces in 1843. I can’t dispute the fun of “dodecahedron” as a word to say. Many solid-geometric shapes have names that are merely descriptive, but which are rendered with Greek or Latin syllables so as to sound magical.

Bud Grace’s Piranha Club for the 6th started a sequence in which the Future Disgraced Former President needs the most brilliant person in the world, Bud Grace. A word balloon full of mathematics is used as symbol for this genius. I feel compelled to point out Bud Grace was a physics major. But while Grace could as easily have used something from the physics department to show his deep thinking abilities, that would all but certainly have been rendered as equation and graphs, the stuff of mathematics again.

At the White Supremacist House: 'I have the smartest people I could find to help me run this soon-to-be-great-again country, but I'm worried that they're NOT SMART ENOUGH! I want the WORLD'S SMARTEST GENIUS to be my SPECIAL ADVISOR!' Meanwhile, cartoonist Bud Grace thinks of stuff like A = pi*r^2 and a^2 + b^2 = c^2 and tries working out 241 times 365, 'carry the one ... hmmmm ... '
Bud Grace’s Piranha Club for the 6th of March, 2017. 241 times 635 is 153,035 by the way. I wouldn’t work that out in my head if I needed the number. I might work out an estimate of how big it was, in which case I’d do this: 241 is about 250, which is one-quarter of a thousand. One-quarter of 635 is something like 150, which times a thousand is 150,000. If I needed it exactly I’d get a calculator. Unless I just needed something to occupy my mind without having any particular emotional charge.

Scott Meyer’s Basic Instructions rerun for the 6th is aptly titled, “How To Unify Newtonian Physics And Quantum Mechanics”. Meyer’s advice is not bad, really, although generic enough it applies to any attempts to reconcile two different models of a phenomenon. Also there’s not particularly a problem reconciling Newtonian physics with quantum mechanics. It’s general relativity and quantum mechanics that are so hard to reconcile.

Still, Basic Instructions is about how you can do a thing, or learn to do a thing. It’s not about how to allow anything to be done for the first time. And it’s true that, per quantum mechanics, we can’t predict exactly what any one particle will do at any time. We can say what possible things it might do and how relatively probable they are. But big stuff, the stuff for which Newtonian physics is relevant, involve so many particles that the unpredictability becomes too small to notice. We can see this as the Law of Large Numbers. That’s the probability rule that tells us we can’t predict any coin flip, but we know that a million fair tosses of a coin will not turn up 800,000 tails. There’s more to it than that (there’s always more to it), but that’s a starting point.

Michael Fry’s Committed rerun for the 6th features Albert Einstein as the icon of genius. Natural enough. And it reinforces this with the blackboard full of mathematics. I’m not sure if that blackboard note of “E = md3” is supposed to be a reference to the famous Far Side panel of Einstein hearing the maid talk about everything being squared away. I’ll take it as such.

Reading the Comics, December 30, 2016: New Year’s Eve Week Edition


So last week, for schedule reasons, I skipped the Christmas Eve strips and promised to get to them this week. There weren’t any Christmas Eve mathematically-themed comic strips. Figures. This week, I need to skip New Year’s Eve comic strips for similar schedule reasons. If there are any, I’ll talk about them next week.

Lorie Ransom’s The Daily Drawing for the 28th is a geometry wordplay joke for this installment. Two of them, when you read the caption.

John Graziano’s Ripley’s Believe It or Not for the 28th presents the quite believable claim that Professor Dwight Barkley created a formula to estimate how long it takes a child to ask “are we there yet?” I am skeptical the equation given means all that much. But it’s normal mathematician-type behavior to try modelling stuff. That will usually start with thinking of what one wants to represent, and what things about it could be measured, and how one expects these things might affect one another. There’s usually several plausible-sounding models and one has to select the one or ones that seem likely to be interesting. They have to be simple enough to calculate, but still interesting. They need to have consequences that aren’t obvious. And then there’s the challenge of validating the model. Does its description match the thing we’re interested in well enough to be useful? Or at least instructive?

Len Borozinski’s Speechless for the 28th name-drops Albert Einstein and the theory of relativity. Marginal mathematical content, but it’s a slow week.

John Allison’s Bad Machinery for the 29th mentions higher dimensions. More dimensions. In particular it names ‘ana’ and ‘kata’ as “the weird extra dimensions”. Ana and kata are a pair of directions coined by the mathematician Charles Howard Hinton to give us a way of talking about directions in hyperspace. They echo the up/down, left/right, in/out pairs. I don’t know that any mathematicians besides Rudy Rucker actually use these words, though, and that in his science fiction. I may not read enough four-dimensional geometry to know the working lingo. Hinton also coined the “tesseract”, which has escaped from being a mathematician’s specialist term into something normal people might recognize. Mostly because of Madeline L’Engle, I suppose, but that counts.

Samson’s Dark Side of the Horse for the 29th is Dark Side of the Horse‘s entry this essay. It’s a fun bit of play on counting, especially as a way to get to sleep.

John Graziano’s Ripley’s Believe It or Not for the 29th mentions a little numbers and numerals project. Or at least representations of numbers. Finding other orders for numbers can be fun, and it’s a nice little pastime. I don’t know there’s an important point to this sort of project. But it can be fun to accomplish. Beautiful, even.

Mark Anderson’s Andertoons for the 30th relieves us by having a Mark Anderson strip for this essay. And makes for a good Roman numerals gag.

Ryan Pagelow’s Buni for the 30th can be counted as an anthropomorphic-numerals joke. I know it’s more of a “ugh 2016 was the worst year” joke, but it parses either way.

John Atkinson’s Wrong Hands for the 30th is an Albert Einstein joke. It’s cute as it is, though.

Reading the Comics, December 10, 2016: E = mc^2 Edition


And now I can finish off last week’s mathematically-themed comic strips. There’s a strong theme to them, for a refreshing change. It would almost be what we’d call a Comics Synchronicity, on Usenet group rec.arts.comics.strips, had they all appeared the same day. Some folks claiming to be open-minded would allow a Synchronicity for strips appearing on subsequent days or close enough in publication, but I won’t have any of that unless it suits my needs at the time.

Ernie Bushmiller’s for the 6th would fit thematically better as a Cameo Edition comic. It mentions arithmetic but only because it’s the sort of thing a student might need a cheat sheet on. I can’t fault Sluggo needing help on adding eight or multiplying by six; they’re hard. Not remembering 4 x 2 is unusual. But everybody has their own hangups. The strip originally ran the 6th of December, 1949.

People contorted to look like a 4, a 2, and a 7 bounce past Dethany's desk. She ponders: 'Performance review time ... when the company reduces people to numbers.' Wendy, previous star of the strip, tells Dethany 'You're next.' Wendy's hair is curled into an 8.
Bill holbrook’s On The Fastrack for the 7th of December, 2016. Don’t worry about the people in the first three panels; they’re just temps, and weren’t going to appear in the comic again.

Bill holbrook’s On The Fastrack for the 7th seems like it should be the anthropomorphic numerals joke for this essay. It doesn’t seem to quite fit the definition, but, what the heck.

Brian Boychuk and Ron Boychuk’s The Chuckle Brothers on the 7th starts off the run of E = mc2 jokes for this essay. This one reminds me of Gary Larson’s Far Side classic with the cleaning woman giving Einstein just that little last bit of inspiration about squaring things away. It shouldn’t surprise anyone that E equalling m times c squared isn’t a matter of what makes an attractive-looking formula. There’s good reasons when one thinks what energy and mass are to realize they’re connected like that. Einstein’s famous, deservedly, for recognizing that link and making it clear.

Mark Pett’s Lucky Cow rerun for the 7th has Claire try to use Einstein’s famous quote to look like a genius. The mathematical content is accidental. It could be anything profound yet easy to express, and it’s hard to beat the economy of “E = mc2” for both. I’d agree that it suggests Claire doesn’t know statistics well to suppose she could get a MacArthur “Genius” Grant by being overheard by a grant nominator. On the other hand, does anybody have a better idea how to get their attention?

Harley Schwadron’s 9 to 5 for the 8th completes the “E = mc2” triptych. Calling a tie with the equation on it a power tie elevates the gag for me. I don’t think of “E = mc2” as something that uses powers, even though it literally does. I suppose what gets me is that “c” is a constant number. It’s the speed of light in a vacuum. So “c2” is also a constant number. In form the equation isn’t different from “E = m times seven”, and nobody thinks of seven as a power.

Morrie Turner’s Wee Pals rerun for the 8th is a bit of mathematics wordplay. It’s also got that weird Morrie Turner thing going on where it feels unquestionably earnest and well-intentioned but prejudiced in that way smart 60s comedies would be.

Sarge demands to know who left this algebra book on his desk; Zero says not him. Sarge ignores him and asks 'Who's been figuring all over my desk pad?' Zero also unnecessarily denies it. 'Come on, whose is it?!' Zero reflects, 'Gee, he *never* picks on *me*!'
Mort Walker’s vintage Beetle Bailey for the 18th of May, 1960. Rerun the 9th of December, 2016. For me the really fascinating thing about ancient Beetle Bailey strips is that they could run today with almost no changes and yet they feel like they’re from almost a different cartoon universe from the contemporary comic. I don’t know how that is, or why it is.

Mort Walker’s Beetle Bailey for the 18th of May, 1960 was reprinted on the 9th. It mentions mathematics — algebra specifically — as the sort of thing intelligent people do. I’m going to take a leap and suppose it’s the sort of algebra done in high school about finding values of ‘x’ rather than the mathematics-major sort of algebra, done with groups and rings and fields. I wonder when holding a mop became the signifier of not just low intelligence but low ambition. It’s subverted in Jef Mallet’s Frazz, the title character of which works as a janitor to support his exercise and music habits. But it is a standard prop to signal something.

Reading the Comics, December 3, 2016: Cute Little Jokes Edition


Comic Strip Master Command apparently wanted me to have a bunch of easy little pieces that don’t inspire rambling essays. Message received!

Mark Litzler’s Joe Vanilla for the 27th is a wordplay joke in which any mathematical content is incidental. It could be anything put in a positive light; numbers are just easy things to arrange so. From the prominent appearance of ‘3’ and ‘4’ I supposed Litzler was using the digits of π, but if he is, it’s from some part of π that I don’t recognize. (That would be any part after the seventeenth digit. I’m not obsessive about π digits.)

Samson’s Dark Side Of The Horse is whatever the equivalent of punning is for Roman Numerals. I like Horace blushing.

John Deering’s Strange Brew for the 28th is a paint-by-numbers joke, and one I don’t see done often. And there is beauty in the appearance of mathematics. It’s not appreciated enough. I think looking at the tables of integral formulas on the inside back cover of a calculus book should prove the point, though. All those rows of integral signs and sprawls of symbols after show this abstract beauty. I’ve surely mentioned the time when the creative-arts editor for my undergraduate leftist weekly paper asked for a page of mathematics or physics work to include as an picture, too. I used the problem that inspired my “Why Stuff Can Orbit” sequence over on my mathematics blog. The editor loved the look of it all, even if he didn’t know what most of it meant.

Scientisty type: 'Yessirree, there we have it: I've just proved we're completely alone in a cold, dying universe'. This provokes an angry stare from the other scientisty type, who's wearing an 'I Believe' grey-aliens T-shirt.
Niklas Eriksson’s Carpe Diem for the 29th of November, 2016. I’m not sure why this has to be worked out in the break room but I guess you work out life where you do. Anyway, I’m glad to see the Grey Aliens allow for Green Aliens representing them on t-shirts.

Niklas Eriksson’s Carpe Diem for the 29th is a joke about life, I suppose. It uses a sprawled blackboard full of symbols to play the part of the proof. It’s gibberish, of course, although I notice how many mathematics cliches get smooshed into it. There’s a 3.1451 — I assume that’s a garbed digits of π — under a square root sign. There’s an “E = mc”, I suppose a garbled bit of Einstein’s Famous Equation in there. There’s a “cos 360”. 360 evokes the number of degrees in a circle, but mathematicians don’t tend to use degrees. There’s analytic reasons why we find it nicer to use radians, for which the equivalent would be “cos 2π”. If we wrote that at all, since the cosine of 2π is one of the few cosines everyone knows. Every mathematician knows. It’s 1. Well, maybe the work just got to that point and it hasn’t been cleaned up.

Eriksson’s Carpe Diem reappears the 30th, with a few blackboards with less mathematics to suggest someone having a creative block. It does happen to us all. My experience is mathematicians don’t tend to say “Eureka” when we do get a good idea, though. It’s more often some vague mutterings and “well what if” while we form the idea. And then giggling or even laughing once we’re sure we’ve got something. This may be just me and my friends. But it is a real rush when we have it.

Scientisty type speaking to a disheartened scientisty type. 'Oh, do shut UP, von Braun. I haven't had the chance to shout 'Eureka' all week either.'
Niklas Eriksson’s Carpe Diem for the 30th of November, 2016. Maybe he should take a warm bath?

Dan Collins’s Looks Good On Paper for the 29t tells the Möbius strip joke. It’s a well-rendered one, though; I like that there is a readable strip in there and that it’s distorted to fit the geometry.

Henry Scarpelli and Craig Boldman’s Archie rerun for the 2nd of December tosses off the old gag about not needing mathematics now that we have calculators. It’s not a strip about that, and that’s fine.

Jughead and Archie reflect how it seems like a waste to learn mathematics when they have calculators, or spelling when they have spell-checkers. Archie suggests getting a snack and his dad says he's *got* a garbage disposal.
Henry Scarpelli and Craig Boldman’s Archie rerun for the 2nd of December, 2016. Now, not to nitpick, but Jughead and Archie don’t declare it *is* a waste of time to learn mathematics or spelling when a computer can do that work. Also, why don’t we have a word like ‘calculator’ for ‘spell-checker’? I mean, yes, ‘spell-checker’ is an acceptable word, but it’s like calling a ‘calculator’ an ‘arithmetic-doer’.

Mark Anderson’s Andertoons finally appeared the 2nd. It’s a resistant-student joke. And a bit of wordplay.

Ruben Bolling’s Super-Fun-Pak Comix from the 2nd featured an installment of Tautological But True. One might point out they’re using “average” here to mean “arithmetic mean”. There probably isn’t enough egg salad consumed to let everyone have a median-sized serving. And I wouldn’t make any guesses about the geometric mean serving. But the default meaning of “average” is the arithmetic mean. Anyone using one of the other averages would say so ahead of time or else is trying to pull something.

Reading the Comics, November 23, 2016: Featuring A Betty Boop Cartoon Edition


I admit to padding this week’s collection of mathematically-themed comic strips. There’s just barely enough to justify my splitting this into a Sunday and a Tuesday installment. I’m including a follow-the-bouncing-ball cartoon to make up for that though. Enjoy!

Jimmy Hatlo’s Little Iodine from the 20th originally ran the 18th of September, 1955. It’s a cute enough bit riffing on realistic word problems. If the problems do reflect stuff ordinary people want to know, after all, then they’re going to be questions people in the relevant fields know how to solve. A limitation is that word problems will tend to pick numbers that make for reasonable calculations, which may be implausible for actual problems. None of the examples Iodine gives seem implausible to me, but what do I know about horses? But I do sometimes encounter problems which have the form but not content of a reasonable question, like an early 80s probability book asking about the chances of one or more defective transistors in a five-transistor radio set. (The problem surely began as one about burned-out vacuum tubes in a radio.)

Daniel Beyer’s Long Story Short for the 21st is another use of Albert Einstein as iconic for superlative first-rate genius. I’m curious how long it did take for people to casually refer to genius as Einstein. The 1930 song Kitty From Kansas City (and its 1931 Screen Songs adaptation, starring Betty Boop) mention Einstein as one of those names any non-stupid person should know. But that isn’t quite the same as being the name for a genius.

My love asked if I’d include Stephen Pastis’s Pearls Before Swine of the 22nd. It has one of the impossibly stupid crocodiles say, poorly, that he was a mathematics major. I admitted it depended how busy the week was. On a slow week I’ll include more marginal stuff.

Is it plausible that the Croc is, for all his stupidity, a mathematics major? Well, sure. Perseverance makes it possible to get any degree. And given Croc’s spent twenty years trying to eat Zebra without getting close clearly perseverance is one of his traits. But are mathematics majors bad at communication?

Certainly we get the reputation for it. Part of that must be that any specialized field — whether mathematics, rocket science, music, or pasta-making — has its own vocabulary and grammar for that vocabulary that outsiders just don’t know. If it were easy to follow it wouldn’t be something people need to be trained in. And a lay audience starts scared of mathematics in a way they’re not afraid of pasta technology; you can’t communicate with people who’ve decided they can’t hear you. And many mathematical constructs just can’t be explained in a few sentences, the way vacuum extrusion of spaghetti noodles could be. And, must be said, it’s often the case a mathematics major (or a major in a similar science or engineering-related field) has English as a second (or third) language. Even a slight accent can make someone hard to follow, and build an undeserved reputation.

The Pearls crocodiles are idiots, though. The main ones, anyway; their wives and children are normal.

Ernie Bushmiller’s Nancy Classics for the 23rd originally appeared the 23rd of November, 1949. It’s just a name-drop of mathematics, though, using it as the sort of problem that can be put on the blackboard easily. And it’s not the most important thing going on here, but I do notice Bushmiller drawing the blackboard as … er … not black. It makes the composition of the last panel easier to read, certainly. And makes the visual link between the paper in the second panel and the blackboard in the last stronger. It seems more common these days to draw a blackboard that’s black. I wonder if that’s so, or if it reflects modern technology making white-on-black-text easier to render. A Photoshop select-and-invert is instantaneous compared to what Bushmiller had to do.

Reading the Comics, November 5, 2016: Surprisingly Few Halloween Costumes Edition


Comic Strip Master Command gave me a light load this week, which suit me fine. I’ve been trying to get the End 2016 Mathematics A To Z comfortably under way instead. It does strike me that there were fewer Halloween-themed jokes than I’d have expected. For all the jokes there are to make about Halloween I’d imagine some with some mathematical relevance would come up. But they didn’t and, huh. So it goes. The one big exception is the one I’d have guessed would be the exception.

Bill Amend’s FoxTrot for the 30th — a new strip — plays with the scariness of mathematics. Trigonometry specifically. Trig is probably second only to algebra for the scariest mathematics normal people encounter. And that’s probably more because people get to algebra before they might get to trigonometry. Which is madness, in its way. Trigonometry is about how we can relate angles, arcs, and linear distances. It’s about stuff anyone would like to know, like how to go from an easy-to-make observation of the angle spanned by a thing to how big the thing must be. But the field does require a bunch of exotic new functions like sine and tangent and novelty acts like “arc-cosecant”. And the numbers involved can be terrible things. The sine of an angle, for example, is almost always going to be some irrational number. For common angles we use a lot it’ll be an irrational number with an easy-to-understand form. For example the sine of 45 degrees, mentioned here, is “one-half the square root of two”. Anyone not trying to be intimidating will use that instead. But the sine of, say, 50 degrees? I don’t know what that is either except that it’s some never-ending sequence of digits. People love to have digits, but when they’re asked to do something with them, they get afraid and I don’t blame them.

Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 30th uses sudoku as shorthand for “genius thinking”. I am aware some complain sudoku isn’t mathematics. It’s certainly logic, though, and if we’re going to rule out logic puzzles from mathematics we’re going to lose a lot of fun fields. One of the commenters provided what I suppose the solution to be. (I haven’t checked.) If wish to do the puzzle be careful about scrolling.

In Jef Mallet’s Frazz for the 2nd Caulfield notices something cute about 100. A perfect square is a familiar enough idea; it’s a whole number that’s the square of another whole number. The “roundest of round numbers” is a value judgement I’m not sure I can get behind. It’s a good round number, anyway, at least for stuff that’s sensibly between about 50 and 150. Or maybe between 50 and 500 if you’re just interested in about how big something might be. An irrational number, well, you know where that joke’s going.

Mrs Olsen doesn’t seem impressed by Caulfield’s discovery, although in fairness we don’t see the actual aftermath. Sometimes you notice stuff like that and it is only good for a “huh”. But sometimes you get into some good recreational mathematics. It’s the sort of thinking that leads to discovering magic squares and amicable numbers and palindromic prime numbers and the like. Do they lead to important mathematics? Some of them do. Or at least into interesting mathematics. Sometimes they’re just passingly amusing.

Greg Curfman’s Meg rerun for the 12th quotes Einstein’s famous equation as the sort of thing you could just expect would be asked in school. I’m not sure I ever had a class where knowing E = mc2 was the right answer to a question, though. Maybe as I got into physics since we did spend a bit of time on special relativity and E = mc2 turns up naturally there. Maybe I’ve been out of elementary school too long to remember.

Mark Tatulli’s Heart of the City for the 4th has Heart and Dean talking about postapocalyptic society. Heart doubts that postapocalyptic society would need people like him, “with long-division experience”. Ah, but, grant the loss of computing devices. People will still need to compute. Before the days of electrical, and practical mechanical, computing people who could compute accurately were in demand. The example mathematicians learn to remember is Zacharias Dase, a German mental calculator. He was able to do astounding work and in his head. But he didn’t earn so much money as pro-mental-arithmetic propaganda would like us to believe. And why work entirely in your head if you don’t need to?

Larry Wright’s Motley Classics rerun for the 5th is a word problem joke. And it’s mixed with labor relations humor for the sake of … I’m not quite sure, actually. Anyway I would have sworn I’d featured this strip in a long-ago Reading The Comics post, but I don’t see it on a casual search. So, go figure.

Reading the Comics, October 29, 2016: Rerun Comics Edition


There were a couple of rerun comics in this week’s roundup, so I’ll go with that theme. And I’ll put in one more appeal for subjects for my End of 2016 Mathematics A To Z. Have a mathematics term you’d like to see me go on about? Just ask! Much of the alphabet is still available.

John Kovaleski’s Bo Nanas rerun the 24th is about probability. There’s something wondrous and strange that happens when we talk about the probability of things like birth days. They are, if they’re in the past, determined and fixed things. The current day is also a known, determined, fixed thing. But we do mean something when we say there’s a 1-in-365 (or 366, or 365.25 if you like) chance of today being your birthday. It seems to me this is probability based on ignorance. If you don’t know when my birthday is then your best guess is to suppose there’s a one-in-365 (or so) chance that it’s today. But I know when my birthday is; to me, with this information, the chance today is my birthday is either 0 or 1. But what are the chances that today is a day when the chance it’s my birthday is 1? At this point I realize I need much more training in the philosophy of mathematics, and the philosophy of probability. If someone is aware of a good introductory book about it, or a web site or blog that goes into these problems in a way a lay reader will understand, I’d love to hear of it.

I’ve featured this installment of Poor Richard’s Almanac before. I’ll surely feature it again. I like Richard Thompson’s sense of humor. The first panel mentions non-Euclidean geometry, using the connotation that it does have. Non-Euclidean geometries are treated as these magic things — more, these sinister magic things — that defy all reason. They can’t defy reason, of course. And at least some of them are even sensible if we imagine we’re drawing things on the surface of the Earth, or at least the surface of a balloon. (There are non-Euclidean geometries that don’t look like surfaces of spheres.) They don’t work exactly like the geometry of stuff we draw on paper, or the way we fit things in rooms. But they’re not magic, not most of them.

Stephen Bentley’s Herb and Jamaal for the 25th I believe is a rerun. I admit I’m not certain, but it feels like one. (Bentley runs a lot of unannounced reruns.) Anyway I’m refreshed to see a teacher giving a student permission to count on fingers if that’s what she needs to work out the problem. Sometimes we have to fall back on the non-elegant ways to get comfortable with a method.

Dave Whamond’s Reality Check for the 25th name-drops Einstein and one of the three equations that has any pop-culture currency.

Guy Gilchrist’s Today’s Dogg for the 27th is your basic mathematical-symbols joke. We need a certain number of these.

Berkeley Breathed’s Bloom County for the 28th is another rerun, from 1981. And it’s been featured here before too. As mentioned then, Milo is using calculus and logarithms correctly in his rather needless insult of Freida. 10,000 is a constant number, and as mentioned a few weeks back its derivative must be zero. Ten to the power of zero is 1. The log of 10, if we’re using logarithms base ten, is also 1. There are many kinds of logarithms but back in 1981, the default if someone said “log” would be the logarithm base ten. Today the default is more muddled; a normal person would mean the base-ten logarithm by “log”. A mathematician might mean the natural logarithm, base ‘e’, by “log”. But why would a normal person mention logarithms at all anymore?

Jef Mallett’s Frazz for the 28th is mostly a bit of wordplay on evens and odds. It’s marginal, but I do want to point out some comics that aren’t reruns in this batch.

Reading the Comics, October 1, 2016: Jumble Is Back Edition


Comic Strip Master Command sent another normal-style week for mathematics references. There’s not much that lets me get really chatty or gossippy about mathematics lore. That’s all right. The important thing is: we’ve got Jumble back.

Greg Cravens’s The Buckets for the 25th features a bit of parental nonsense-telling. The rather annoying noise inside a car’s cabin when there’s one window open is the sort of thing fluid mechanics ought to be able to study. I see references claiming this noise to be a Helmholz Resonance. This is a kind of oscillation in the air that comes from wind blowing across the lone hole in a solid object. Wikipedia says it’s even the same phenomenon producing an ocean-roar in a seashell held up to the ear. It’s named for Hermann von Helmholtz, who described it while studying sound and vortices. Helmholz is also renowned for making a clear statement of the conservation of energy — an idea many were working towards, mind — and in thermodynamics and electromagnetism and for that matter how the eye works. Also how fast nerves transmit signals. All that said, I’m not sure that all the unpleasant sound heard and pressure felt from a single opened car window is Helmholz Resonance. Real stuff is complicated and the full story is always more complicated than that. I wouldn’t go farther than saying that Helmholz Resonance is one thing to look at.

Michael Cavna’s Warped for the 25th uses two mathematics-cliché equations as “amazingly successful formulas”. One can quibble with whether Einstein should be counted under mathematics. Pythagoras, at least for the famous theorem named for him, nobody would argue. John Grisham, I don’t know, the joke seems dated to me but we are talking about the comics.

Tony Carrillos’ F Minus for the 28th uses arithmetic as as something no reasonable person can claim is incorrect. I haven’t read the comments, but I am slightly curious whether someone says something snarky about Common Core mathematics — or even the New Math for crying out loud — before or after someone finds a base other than ten that makes the symbols correct.

Cory Thomas’s college-set soap-opera strip Watch Your Head for the 28th name-drops Introduction to Functional Analysis. It won’t surprise you it’s a class nobody would take on impulse. It’s an upper-level undergraduate or a grad-student course, something only mathematics majors would find interesting. But it is very interesting. It’s the reward students have for making it through Real Analysis, the spirit-crushing course about why calculus works. Functional Analysis is about what we can do with functions. We can make them work like numbers. We can define addition and multiplication, we can measure their size, we can create sequences of them. We can treat functions almost as if they were numbers. And while we’re working on things more abstract and more exotic than the ordinary numbers Real Analysis depends on, somehow, Functional Analysis is easier than Real Analysis. It’s a wonder.

Mark Anderson’s Andertoons for the 29th features a student getting worried about the order of arithmetic operations. I appreciate how kids get worried about the feelings of things like that. Although, truly, subtraction doesn’t go “last”; addition and subtraction have the same priority. They share the bottom of the pile, though. Multiplication and division similarly share a priority, above addition-and-subtraction. Many guides to the order of operations say to do addition-and-subtraction in order left to right, but that’s not so. Setting a left-to-right order is okay for deciding where to start. But you could do a string of additions or subtractions in any order and get the same answer, unless the expression is inconsistent.

Four people sitting at a table divided up as a pie chart. The one sitting behind the overwhelming majority of the chunk says, 'C'mon guys ... I feel like I'm doing all the work here.'
Daniel Beyer’s Long Story Short for the 30th of September, 2016. I think Randolph Itch, 2am did this joke too but then had everyone retire to the bar chart.

Daniel Beyer’s Long Story Short for the 30th is a pie chart joke. There’s not a lot of mathematics to it, but I’m amused.

Justin Boyd’s Invisible Bread for the 30th has maybe my favorite dumb joke of the week. It’s just a kite that’s proven its knowledge of mathematics. I’m a little surprised the kite didn’t call out a funnier number, by which I mean 37, but perhaps … no, that doesn’t work, actually. Of course the kite would be comfortable with higher mathematics.

LIPOS O-O-O; PURTE OO---; VONPER -OO---; YETMSS --O-OO. Her students were beginning to understand addition and subtraction OOOO OO OOOO.
David L Hoyt and Jeff Knurek’s Jumble for the 1st of October, 2016. I don’t know that there even is a permanent link for this that would be any good.

And as promised, David L Hoyt and Jeff Knurek’s Jumble for the 1st of October mentions mathematics. That’s enough for me to include here.

Reading the Comics, September 24, 2016: Infinities Happen Edition


I admit it’s a weak theme. But two of the comics this week give me reason to talk about infinitely large things and how the fact of being infinitely large affects the probability of something happening. That’s enough for a mid-September week of comics.

Kieran Meehan’s Pros and Cons for the 18th of September is a lottery problem. There’s a fun bit of mathematical philosophy behind it. Supposing that a lottery runs long enough without changing its rules, and that it does draw its numbers randomly, it does seem to follow that any valid set of numbers will come up eventually. At least, the probability is 1 that the pre-selected set of numbers will come up if the lottery runs long enough. But that doesn’t mean it’s assured. There’s not any law, physical or logical, compelling every set of numbers to come up. But that is exactly akin to tossing a coin fairly infinity many times and having it come up tails every single time. There’s no reason that can’t happen, but it can’t happen.

'It's true, Dr Peel. I'm a bit of a psychic.' 'Would you share the winning lottery numbers with me?' '1, 10, 17, 39, 43, and 47'. 'Those are the winning lottery numbers?' 'Yes!' 'For this Tuesday?' 'Ah! That's where it gets a bit fuzzy.'
Kieran Meehan’s Pros and Cons for the 18th of September, 2016. I can’t say whether any of these are supposed to be the PowerBall number. (The comic strip’s title is a revision of its original, which more precisely described its gimmick but was harder to remember: A Lawyer, A Doctor, and a Cop.)

Leigh Rubin’s Rubes for the 19th name-drops chaos theory. It’s wordplay, as of course it is, since the mathematical chaos isn’t the confusion-and-panicky-disorder of the colloquial term. Mathematical chaos is about the bizarre idea that a system can follow exactly perfectly known rules, and yet still be impossible to predict. Henri Poincaré brought this disturbing possibility to mathematicians’ attention in the 1890s, in studying the question of whether the solar system is stable. But it lay mostly fallow until the 1960s when computers made it easy to work this out numerically and really see chaos unfold. The mathematician type in the drawing evokes Einstein without being too close to him, to my eye.

Allison Barrows’s PreTeena rerun of the 20th shows some motivated calculations. It’s always fun to see people getting excited over what a little multiplication can do. Multiplying a little change by a lot of chances is one of the ways to understanding integral calculus, and there’s much that’s thrilling in that. But cutting four hours a night of sleep is not a little thing and I wouldn’t advise it for anyone.

Jason Poland’s Robbie and Bobby for the 20th riffs on Jorge Luis Borges’s Library of Babel. It’s a great image, the idea of the library containing every book possible. And it’s good mathematics also; it’s a good way to probe one’s understanding of infinity and of probability. Probably logic, also. After all, grant that the index to the Library of Babel is a book, and therefore in the library somehow. How do you know you’ve found the index that hasn’t got any errors in it?

Ernie Bushmiller’s Nancy Classics for the 21st originally ran the 21st of September, 1949. It’s another example of arithmetic as a proof of intelligence. Routine example, although it’s crafted with the usual Bushmiller precision. Even the close-up, peering-into-your-soul image if Professor Stroodle in the second panel serves the joke; without it the stress on his wrinkled brow would be diffused. I can’t fault anyone not caring for the joke; it’s not much of one. But wow is the comic strip optimized to deliver it.

Thom Bluemel’s Birdbrains for the 23rd is also a mathematics-as-proof-of-intelligence strip, although this one name-drops calculus. It’s also a strip that probably would have played better had it come out before Blackfish got people asking unhappy questions about Sea World and other aquariums keeping large, deep-ocean animals. I would’ve thought Comic Strip Master Command to have sent an advisory out on the topic.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 23rd is, among other things, a guide for explaining the difference between speed and velocity. Speed’s a simple number, a scalar in the parlance. Velocity is (most often) a two- or three-dimensional vector, a speed in some particular direction. This has implications for understanding how things move, such as pedestrians.

Reading the Comics, May 17, 2016: Again, No Pictures Edition


Last week’s Reading The Comics was a bunch of Gocomics.com strips. And I don’t feel the need to post the images for those, since they’re reasonably stable links. Today’s is also a bunch of Gocomics.com strips. I know how every how-to-bring-in-readers post ever says you should include images. Maybe I will commission someone to do some icons. It couldn’t hurt.

Someone looking close at the title, with responsible eye protection, might notice it’s dated the 17th, a day this is not. There haven’t been many mathematically-themed comic strips since the 17th is all. And I’m thinking to try out, at least for a while, making the day on which a Reading the Comics post is issued regular. Maybe Monday. This might mean there are some long and some short posts, but being a bit more scheduled might help my writing.

Mark Anderson’s Andertoons for the 14th is the charting joke for this essay. Also the Mark Anderson joke for this essay. I was all ready to start explaining ways that the entropy of something can decrease. The easiest way is by expending energy, which we can see as just increasing entropy somewhere else in the universe. The one requiring the most patience is simply waiting: entropy almost always increases, or at least doesn’t decrease. But “almost always” isn’t the same as “always”. But I have to pass. I suspect Anderson drew the chart going down because of the sense of entropy being a winding-down of useful stuff. Or because of down having connotations of failure, and the increase of entropy suggesting the failing of the universe. And we can also read this as a further joke: things are falling apart so badly that even entropy isn’t working like it ought. Anderson might not have meant for a joke that sophisticated, but if he wants to say he did I won’t argue it.

Scott Adams’s Dilbert Classics for the 14th reprinted the comic of the 20th of March, 1993. I admit I do this sort of compulsive “change-simplifying” paying myself. It’s easy to do if you have committed to memory pairs of numbers separated by five: 0 and 5, 1 and 6, 2 and 7, and so on. So if I get a bill for (say) $4.18, I would look for whether I have three cents in change. If I have, have I got 23 cents? That would give me back a nickel. 43 cents would give me back a quarter in change. And a quarter is great because I can use that for pinball.

Sometimes the person at the cash register doesn’t want a ridiculous bunch of change. I don’t blame them. It’s easy to suppose that someone who’s given you $5.03 for a $4.18 charge misunderstood what the bill was. Some folks will take this as a chance to complain mightily about how kids don’t learn even the basics of mathematics anymore and the world is doomed because the young will follow their job training and let machines that are vastly better at arithmetic than they are do arithmetic. This is probably what Adams was thinking, since, well, look at the clerk’s thought balloon in the final panel.

But consider this: why would Dilbert have handed over $7.14? Or, specifically, how could he give $7.14 to the clerk but not have been able to give $2.14, which would make things easier on everybody? There’s no combination of bills — in United States or, so far as I’m aware, any major world currency — in which you can give seven dollars but not two dollars. He had to be handing over five dollars he was getting right back. The clerk would be right to suspect this. It looks like the start of a change scam, begun by giving a confusing amount of money.

Had Adams written it so that the charge was $6.89, and Dilbert “helpfully” gave $12.14, then Dilbert wouldn’t be needlessly confusing things.

Dave Whamond’s Reality Check for the 15th is that pirate-based find-x joke that feels like it should be going around Facebook, even though I don’t think it has been. I can’t say the combination of jokes quite makes logical sense, but I’m amused. It might be from the Reality Check squirrel in the corner.

Nate Fakes’s Break of Day for the 16th is the anthropomorphized shapes joke for this essay. It’s not the only shapes joke, though.

Doug Bratton’s Pop Culture Shock Therapy for the 16th is the Einstein joke for this essay.

Rick Detorie’s One Big Happy rerun for the 17th is another shapes joke. Ruthie has strong ideas about what distinguishes a pyramid from a triangle. In this context I can’t say she’s wrong to assert what a pyramid is.

Reading the Comics, April 24, 2016: Mental Mathematics and Calendars Edition


Warning! I do some showing off in this installment of the Reading the Comics series. Please forgive me. I was feeling a little giddy.

Scott Hilburn’s The Argyle Sweater I had just mentioned to a friend never seems to show up in these columns anymore. And Hilburn would so reliably do strips about anthropomorphized numerals. He returns on the 20th, after a hiatus of some length I haven’t actually checked here, with a name-drop of Einstein instead. I grinned, although a good part of what amused me was the look of the guy in the lower right of the panel. Funny pictures carry a comic strip far. Formulating the theory of relativity is a tricky request. The special theory … well, to do it properly takes some sophisticated work. But it doesn’t take much beyond the Pythagorean Theorem to realize that “how long” a thing is, or a time span is, is different for different observers. That’s the most important insight, I would say, and that is easily available. General relativity, which looks at accelerations and gravity, that’s another thing. I’d be interested in a popular treatment that explained enough mathematics people could make usable estimates but that could still make sense to a lay audience. Probably it’s not possible to do this. Too bad.

Mark Tatulli’s Heart of the City just uses arithmetic because it’s a nice compact problem to give a student. It did strike me that 117 times 45 is something one could amaze people with by doing in one’s head, though. Here’s why. 117 times 100 would be easy. Multiplying by hundreds always is. 117 times 50 would be not almost as easy: that’s multiplying by 100 and dividing by two. 117 times 45 … well, that’s 117 times 50 minus 117 times 5. And if you know 117 times 50, then you know 117 times 5: it’s one-tenth that. And one-tenth of a thing is easy to find.

Therefore: 117 times 100 is 11,700. Divide that by two and that’s kind of an ugly-looking number, isn’t it? But all’s not lost. Let me use another bit of falsework: 11,700 is 12,000 minus 300. Half that is 6,000 minus 150. Therefore, half of 11,700 is 5,850. So 117 times 50 is 5,850. One-tenth of that is 585. Therefore, 117 times 45 is 5,850 minus 585. And that will be … 5,275. Ta-da!

Well, no, it isn’t. It’s 5,265. I messed up the carrying. I still think that’s doing well for multiplying ugly numbers like that without writing it down. It just won’t impress people who want the actual you know correct answer.

Mark Anderson’s Andertoons wouldn’t let me down by vanishing for a while. The 21st is not explicitly a strip about extrapolating graphs. I’ll take it as such, though. Once again the art amuses me. I like the crash-up of charted bars. Yes, I saw the Schrödinger’s Cat thing two days later.

Jef Mallett’s Frazz for the 23rd I drag into a mathematics blog because of the long historical links between calendars and mathematics. But Caulfield does talk about something that’s baffled everyone. There’s seven days to the week. There’s seven classically known heavenly bodies in the solar system, besides the Earth. Naming a day for each seems obvious now that we’ve committed to it. But why aren’t the bodies honored in order?

Geocentrism seems like, at first, a plausible reason. The ancients wouldn’t order the sky Sun-Mercury-Venus-Moon-Mars-Jupiter-Saturn. But that doesn’t help. Geocentric models of the solar system (always, so far as I’m aware) put the Moon closest, then Mercury, then Venus, the Sun, Mars, Jupiter, and Saturn.

The answer that, at least, gets repeated in histories of the calendar (for example, here, David Ewing Duncan’s The Calendar: The 5000-Year Struggle To Align The Clock And The Heavens — And What Happened To The Missing Ten Days, which was the first book I had on hand) amounts to a modular arithmetic thing. The Babylonians, if Duncan is right, named a planet-god for each hour of the day. (We treat the Moon and Sun as planets for this discussion.) The planet-gods took their hourly turn in order. If the first hour of the day is Saturn’s to rule, the next is Jupiter’s, then Mars’s, the Sun’s, Venus’s, Mercury’s, and the Moon’s. Then back to Saturn and the system keeps going like that.

So if the first hour of the day is Saturn’s, then who has the first hour of the next day? … the Sun does. If the Sun has the first hour of the day, then who has the first hour of the day after that? … the Moon. And from here you know the pattern. At least you do if you understand that English derives most of its day names from the Norse gods, matched as best they can with those of the Roman State Religion. So, Tiw matches with Mars; Woden with Mercury; Thor with Jupiter; Freya with Venus. The apparently scrambled order of days, relative to the positions of the planets, amounts to what you get if you keep adding 24 to a number by modulo 7 arithmetic.

That is, at least, the generally agreed-upon explanation. I am not aware of what actual researchers of Babylonian culture believe. Duncan, I must admit, takes a hit in his credibility by saying on the page after this that “recently chronobiologists have discovered that the seven-day cycle … may also have biological precedents”. I’m sorry but I just don’t believe him, or whoever he got that from.

Kevin Fagan’s Drabble for the 24th amuses me by illustrating the common phenomenon. We have all taken out the calculator (or computer) to do some calculation that really doesn’t need it. I understand and am sympathetic. It’s so obviously useful to let the calculator work out 117 times 45 and get it right instantly. It’s easy to forget sometimes it’s faster to not bother with the calculator. We are all of us a little ridiculous.

Reading the Comics, December 5, 2015: Awkward Break Edition


I confess I’m dissatisfied with this batch of Reading the Comics posts. I like having something like six to eight comics for one of these roundups. But there was this small flood of mathematically-themed comics on the 6th of December. I could either make do with a slightly short edition, or have an overstuffed edition. I suppose it’s possible to split one day’s comics across two Reading the Comics posts, but that’s crazy talk. So, a short edition today.

Jef Mallett’s Frazz for the 4th of December was part of a series in which Caulfield resists learning about reciprocals. The 4th offers a fair example of the story. At heart the joke is just the student-resisting-class, or student-resisting-story-problems. It certainly reflects a lack of motivation to learn what they are.

We use reciprocals most often to write division problems as multiplication. “a ÷ b” is the same as “a times the reciprocal of b”. But where do we get the reciprocal of b from? … Well, we can say it’s the multiplicative inverse of b. That is, it’s whatever number you have to multiply ‘b’ by in order to get ‘1’. But we’re almost surely going to find that taking 1 and dividing it by b. So we’ve swapped out one division problem for a slightly different one. This doesn’t seem to be getting us anywhere.

But we have gotten a new idea. If we can define the multiplication of things, we might be able to get division for almost free. Could we divide one matrix by another? We can certainly multiply a matrix by the inverse of another. (There are complications at work here. We’ll save them for another time.) A lot of sets allow us to define things that make sense as addition and multiplication. And if we can define a complicated operation in terms of addition and multiplication … If we follow this path, we get to do things like define the cosine of a matrix. Then we just have to figure out why we’d want have a cosine of a matrix.

There’s a simpler practical use of reciprocals. This relates to numerical mathematics, computer work. Computer chips do addition (and subtraction) really fast. They do multiplication a little slower. They do division a lot slower. Division is harder than multiplication, as anyone who’s done both knows. However, dividing by (say) 4 is the same thing as multiplying by 0.25. So if you know you need to divide by a number a lot, then it might make for a faster program to change division into multiplication by a reciprocal. You have to work out the reciprocal, but if you only have to do that once instead of many times over, this might make for faster code. Reciprocals are one of the tools we can use to change a mathematical process into something faster.

(In practice, you should never do this. You have a compiler that does this, and you should let it do its work. But it’s enlightening to know these are the sorts of things your compiler is looking for when it turns your code into something the computer does. And looking for ways to do the same work in less time is a noble side of mathematics.)

Charles Schulz’s Peanuts for the 4th of December (originally from 1968, on the same day) sees Peppermint Patty’s education crash against a word problem. It’s another problem in motivating a student to do a word problem. I admit when I was a kid I’d have been enchanted by this puzzle. But I was a weird one.

Dave Coverly’s Speed Bump for the 4th of December is a mathematics-symbols joke as applied to toast. I think you could probably actually sell those. At least the greater-than and the less-than signs. The approximately-equal-to signs would be hard to use. And people would think they were for bacon anyway.

Ruben Bolling’s Super-Fun-Pak Comix for the 4th of December showcases Young Albert Einstein. That counts as mathematical content, doesn’t it? The strip does make me wonder if they’re still selling music CDs and other stuff for infant or even prenatal development. I’m skeptical that they ever did any good, but it isn’t a field I’ve studied.

Bill Whitehead’s Free Range for the 5th of December uses a blackboard full of mathematical and semi-mathematical symbols to denote “stuff too complicated to understand”. The symbols don’t parse as anything. It is authentic to mathematical work to sometimes skip writing all the details of a thing and write in instead a few words describing it. Or to put in an abbreviation for the thing. That often gets circled or boxed or in some way marked off. That keeps us from later on mistaking, say, “MUB” as the product of M and U and B, whatever that would mean. Then we just have to remember we meant “minimum upper bound” by that.

Reading the Comics, September 16, 2015: Celebrity Appearance Edition


I couldn’t go on calling this Back To School Editions. A couple of the comic strips the past week have given me reason to mention people famous in mathematics or physics circles, and one who’s even famous in the real world too. That’ll do for a title.

Jeff Corriveau’s Deflocked for the 15th of September tells what I want to call an old joke about geese formations. The thing is that I’m not sure it is an old joke. At least I can’t think of it being done much. It seems like it should have been.

The formations that geese, or other birds, form has been a neat corner of mathematics. The question they inspire is “how do birds know what to do?” How can they form complicated groupings and, more, change their flight patterns at a moment’s notice? (Geese flying in V shapes don’t need to do that, but other flocking birds will.) One surprising answer is that if each bird is just trying to follow a couple of simple rules, then if you have enough birds, the group will do amazingly complex things. This is good for people who want to say how complex things come about. It suggests you don’t need very much to have robust and flexible systems. It’s also bad for people who want to say how complex things come about. It suggests that many things that would be interesting can’t be studied in simpler models. Use a smaller number of birds or fewer rules or such and the interesting behavior doesn’t appear.

The geese are flying in V, I, and X patterns. The guess is that they're Roman geese.
Jeff Corriveau’s Deflocked for the 15th of September, 2015.

Scott Adams’s Dilbert Classics from the 15th and 16th of September (originally run the 22nd and 23rd of July, 1992) are about mathematical forecasts of the future. This is a hard field. It’s one people have been dreaming of doing for a long while. J Willard Gibbs, the renowned 19th century physicist who put the mathematics of thermodynamics in essentially its modern form, pondered whether a thermodynamics of history could be made. But attempts at making such predictions top out at demographic or rough economic forecasts, and for obvious reason.

The next day Dilbert’s garbageman, the smartest person in the world, asserts the problem is chaos theory, that “any complex iterative model is no better than a wild guess”. I wouldn’t put it that way, although I’m not sure what would convey the idea within the space available. One problem with predicting complicated systems, even if they are deterministic, is that there is a difference between what we can measure a system to be and what the system actually is. And for some systems that slight error will be magnified quickly to the point that a prediction based on our measurement is useless. (Fortunately this seems to affect only interesting systems, so we can still do things like study physics in high school usefully.)

Maria Scrivan’s Half Full for the 16th of September makes the Common Core joke. A generation ago this was a New Math joke. It’s got me curious about the history of attempts to reform mathematics teaching, and how poorly they get received. Surely someone’s written a popular or at least semipopular book about the process? I need some friends in the anthropology or sociology departments to tell, I suppose.

In Mark Tatulli’s Heart of the City for the 16th of September, Heart is already feeling lost in mathematics. She’s in enough trouble she doesn’t recognize mathematics terms. That is an old joke, too, although I think the best version of it was done in a Bloom County with no mathematical content. (Milo Bloom met his idol Betty Crocker and learned that she was a marketing icon who knew nothing of cooking. She didn’t even recognize “shish kebob” as a cooking term.)

Mell Lazarus’s Momma for the 16th of September sneers at the idea of predicting where specks of dust will land. But the motion of dust particles is interesting. What can be said about the way dust moves when the dust is being battered by air molecules that are moving as good as randomly? This becomes a problem in statistical mechanics, and one that depends on many things, including just how fast air particles move and how big molecules are. Now for the celebrity part of this story.

Albert Einstein published four papers in his “Annus mirabilis” year of 1905. One of them was the Special Theory of Relativity, and another the mass-energy equivalence. Those, and the General Theory of Relativity, are surely why he became and still is a familiar name to people. One of his others was on the photoelectric effect. It’s a cornerstone of quantum mechanics. If Einstein had done nothing in relativity he’d still be renowned among physicists for that. The last paper, though, that was on Brownian motion, the movement of particles buffeted by random forces like this. And if he’d done nothing in relativity or quantum mechanics, he’d still probably be known in statistical mechanics circles for this work. Among other things this work gave the first good estimates for the size of atoms and molecules, and gave easily observable, macroscopic-scale evidence that molecules must exist. That took some work, though.

Dave Whamond’s Reality Check for the 16th of September shows off the Metropolitan Museum of Symmetry. This is probably meant to be an art museum. Symmetries are studied in mathematics too, though. Many symmetries, the ways you can swap shapes around, form interesting groups or rings. And in mathematical physics, symmetries give us useful information about the behavior of systems. That’s enough for me to claim this comic is mathematically linked.

Reading The Comics, November 14, 2014: Rectangular States Edition


I have no idea why Comic Strip Master Command decided this week should see everybody do some mathematics-themed comic strips, but, so they did, and here’s my collection of the, I estimate, six hundred comic strips that touched on something recently. Good luck reading it all.

Samsons Dark Side of the Horse (November 10) is another entry on the theme of not answering the word problem.

Scott Adams’s Dilbert Classics (November 10) started a sequence in which Dilbert gets told the big boss was a geometry major, so, what can he say about rectangles? Further rumors indicate he’s more a geography fan, shifting Dilbert’s topic to the “many” rectangular states of the United States. Of course, there’s only two literally rectangular states, but — and Mark Stein’s How The States Got Their Shapes contains a lot of good explanations of this — many of the states are approximately rectangular. After all, when many of the state boundaries were laid out, the federal government had only vague if any idea what the landscapes looked like in detail, and there weren’t many existing indigenous boundaries the white governments cared about. So setting a proposed territory’s bounds to be within particular lines of latitude and longitude, with some modification for rivers or shorelines or mountain ranges known to exist, is easy, and can be done with rather little of the ambiguity or contradictory nonsense that plagued the eastern states (where, say, a colony’s boundary might be defined as where a river intersects a line of latitude that in fact it never touches). And while perfect rectangularity may be achieved only by Colorado and Wyoming, quite a few states — the Dakotas, Washington, Oregon, Missisippi, Alabama, Iowa — are rectangular enough.

Mikael Wulff and Anders Morgenthaler’s WuMo (November 10) shows that their interest in pi isn’t just a casual thing. They think about what those neglected and non-famous numbers get up to.

Sherman does poorly with mathematic problems that look more like short stories. And don't have pictures.
Jim Toomey’s Sherman’s Lagoon for the 11th of November, 2014. He’s got a point about pictures helping with this kind of problem.

Jim Toomey’s Sherman’s Lagoon starts a “struggling with mathematics homework” story on the 11th, with Sherman himself stumped by a problem that “looks more like a short story” than a math problem. By the 14th Megan points out that it’s a problem that really doesn’t make sense when applied to sharks. Such is the natural hazard in writing a perfectly good word problem without considering the audience.

Homework: Megan points out that a problem about walking in the rain with umbrellas doesn't make much sense for sharks or other underwater creatures.
Jim Toomey’s Sherman’s Lagoon for the 14th of November, 2014.

Mike Peters’s Mother Goose and Grimm (November 12) takes one of its (frequent) breaks from the title characters for a panel-strip-style gag about Roman numerals.

A Roman medic calls for an IV; the nurse asks if he means this numeral 4.
Mike Peters’s Mother Goose and Grimm for the 12th of November, 2014.

Darrin Bell’s Candorville (November 12) starts talking about Zeno’s paradox — not the first time this month that a comic strip’s gotten to the apparent problem of covering any distance when distance is infinitely divisible. On November 13th it’s extended to covering stretches of time, which has exactly the same problem. Now it’s worth reminding people, because a stunning number of them don’t seem to understand this, that Zeno was not suggesting that there’s no such thing as motion (or that he couldn’t imagine an infinite convergent sequence; it’s easy to think of a geometric construction that would satisfy any ancient geometer); he was pointing out that there’s things that don’t make perfect sense about it. Either distance (and time) are infinitely divisible into indistinguishable units, or they are not; and either way has implications that seem contrary to the way motion works. Perhaps they can be rationalized; perhaps they can’t; but when you can find a question that’s easy to pose and hard to answer, you’re probably looking at something really worth thinking hard about.

Bill Amend’s FoxTrot Classics (November 12, a rerun) puns on the various meanings of “irrational”. A fun little fact you might want to try proving sometime, though I wouldn’t fault you if you only tried it out for a couple specific numbers and decided the general case too much to do: any whole number — like 2, 3, 4, or so on — has a square root that’s either another whole number, or else has a square root that’s irrational. There’s not a case where, say, the square root is exactly 45.144 or something like that, though it might be close.

Susan tries to figure out either what year she was in Grade Ten or what her age was back then. She admits she was never any good at math, although the real trouble might be she hasn't got a clear idea what she wants to calculate.
Sandra Bell-Lundy’s Between Friends for the 13th of November, 2014.

Sandra Bell-Lundy’sBetween Friends (November 13) shows one of those cases where mental arithmetic really is useful, as Susan tries to work out — actually, staring at it, I’m not precisely sure what she is trying to work out. Her and her coffee partner’s ages in Grade Ten, probably, or else just when Grade Ten was. That’s most likely her real problem: if you don’t know what you’re looking for it’s very difficult to find it. Don’t start calculating before you know what you’re trying to work out.

If I wanted to work out what year was 35 years ago I’d probably just use a hack: 35 years before 2014 is one year before “35 years before 2015”, which is a much easier problem to do. 35 years before 2015 is also 20 years before 2000, which is 1980, so subtract one and you get 1979. (Alternatively, I might remember it was 35 years ago that the Buggles’ “Video Killed The Radio Star” first appeared, which I admit is not a method that would work for everyone, or for all years.) If I wanted to work out my (and my partner’s) age in Grade Ten … well, I’d use a slightly different hack: I remember very well that I was ten years old in Grade Five (seriously, the fact that twice my grade was my age overwhelmed my thinking on my tenth birthday, which is probably why I had to stay in mathematics), so, add five to that and I’d be 15 in Grade Ten.

Bill Whitehead’s Free Range (November 13) brings up one of the most-quoted equations in the world in order to show off how kids will insult each other, which is fair enough.

Rick Detorie’s One Big Happy (November 13), this one a rerun from a couple years ago because that’s how his strip works on Gocomics, goes to one of its regular bits of the kid Ruthie teaching anyone she can get in range, and while there’s a bit more to arithmetic than just adding two numbers to get a bigger number, she is showing off an understanding of a useful sanity check: if you add together two (positive) numbers, you have to get a result that’s bigger than either of the ones you started with. As for the 14th, and counting higher, well, there’s not much she could do about that.

Steve McGarry’s Badlands (November 14) talks about the kind of problem people wish to have: how to win a lottery where nobody else picks the same numbers, so that the prize goes undivided? The answer, of course, is to have a set of numbers that nobody else picked, but is there any way to guarantee that? And this gets into the curious psychology of random numbers: there is absolutely no reason that 1-2-3-4-5-6, or for that matter 7-8-9-10-11-12, would not come up just as often as, say, 11-37-39-51-52-55, but the latter set looks more random. But we see some strings of numbers as obviously a pattern, while others we don’t see, and we tend to confuse “we don’t know the pattern” with “there is no pattern”. I have heard the lore that actually a disproportionate number of people pick such obvious patterns like 1-2-3-4-5-6, or numbers that form neat pictures on a lottery card, no doubt cackling at how much more clever they are than the average person, and guaranteeing that if such a string ever does come out there’ll a large number of very surprised lottery winners. All silliness, really; the thing to do, obviously, is buy two tickets with the exact same set of numbers, so that if you do win, you get twice the share of anyone else, unless they’ve figured out the same trick.

Reading the Comics, December 29, 2013


I haven’t quite got seven comics mentioning mathematics themes this time around, but, it’s so busy the end of the year that maybe it’s better publishing what I have and not worrying about an arbitrary quota like mine.

Wuff and Morgenthaler’s WuMo (December 16) uses a spray of a bit of mathematics to stand in for “something just too complicated to understand”, and even uses a caricature of Albert Einstein to represent the person who’s just too smart to be understood. I’m a touch disappointed that, as best I can tell, the equations sprayed out don’t mean anything; I’ve enjoyed WuMo — a new comic to North American audiences — so far and kind of expected they would get an irrelevant detail like that plausibly right.

I’m also interested that sixty years after his death the portrait of Einstein still hasn’t been topped as an image for The Really, Really Smart Guy. Possibly nobody since him has managed to combine being both incredibly important — even if it weren’t for relativity, Einstein would be an important figure in science for his work in quantum mechanics, and if he didn’t have relativity or quantum mechanics, he’d still be important for statistical mechanics — and iconic-looking, which I guess really means he let his hair grow wild. I wonder if Stephen Hawking will be able to hold some of that similar pop cultural presence.

Continue reading “Reading the Comics, December 29, 2013”

%d bloggers like this: