## From my Seventh A-to-Z: Big-O and Little-O Notation

I toss off a mention in this essay, about its book publication. By the time it appeared I was thinking whether I could assemble these A-to-Z’s, or a set of them, into a book. I haven’t had the energy to put that together but it still seems viable.

Mr Wu, author of the Singapore Maths Tuition blog, asked me to explain a technical term today. I thought that would be a fun, quick essay. I don’t learn very fast, do I?

A note on style. I make reference here to “Big-O” and “Little-O”, capitalizing and hyphenating them. This is to give them visual presence as a name. In casual discussion they’re just read, or said, as the two words or word-and-a-letter. Often the Big- or Little- gets dropped and we just talk about O. An O, without further context, in my experience means Big-O.

The part of me that wants smooth consistency in prose urges me to write “Little-o”, as the thing described is represented with a lowercase ‘o’. But Little-o sounds like a midway game or an Eyerly Aircraft Company amusement park ride. And I never achieve consistency in my prose anyway. Maybe for the book publication. Until I’m convinced another is better, though, “Little-O” it is. Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

# Big-O and Little-O Notation.

When I first went to college I had a campus post office box. I knew my box number. I also knew the length of the sluggish line for the combination lock code. The lock was a dial, lettered A through J. Being a young STEM-class idiot I thought, boy, would it actually be quicker to pick the lock than wait for the line? A three-letter combination, of ten options? That’s 1,000 possibilities. If I could try five a minute that’s, at worst, three hours 20 minutes. Combination might be anywhere in that set; I might get lucky. I could expect to spend 80 minutes picking my lock.

I decided to wait in line instead, and good that I did. I was unaware lock settings might not be a letter, like ‘A’. It could be the midway point between adjacent letters, like ‘AB’. That meant there were eight times as many combinations as I estimated, and I could expect to spend over ten hours. Even the slow line was faster than that. It transpired that my combination had two of these midway letters.

But that’s a little demonstration of algorithmic complexity. Also in cracking passwords by trial-and-error. Doubling the set of possible combination codes octuples the time it takes to break into the set. Making the combination longer would also work; each extra letter would multiply the cracking time by twenty. So you understand why your password should include “special characters” like punctuation, but most of all should be long.

We’re often interested in how long to expect a task to take. Sometimes we’re interested in the typical time it takes. Often we’re interested in the longest it could ever take. If we have a deterministic algorithm, we can say. We can count how many steps it takes. Sometimes this is easy. If we want to add two two-digit numbers together we know: it will be, at most, three single-digit additions plus, maybe, writing down a carry. (To add 98 and 37 is adding 8 + 7 to get 15, to add 9 + 3 to get 12, and to take the carry from the 15, so, 1 + 12 to get 13, so we have 135.) We can get a good quarrel going about what “a single step” is. We can argue whether that carry into the hundreds column is really one more addition. But we can agree that there is some smallest bit of arithmetic work, and proceed from that.

For any algorithm we have something that describes how big a thing we’re working on. It’s often ‘n’. If we need more than one variable to describe how big it is, ‘m’ gets called up next. If we’re estimating how long it takes to work on a number, ‘n’ is the number of digits in the number. If we’re thinking about a square matrix, ‘n’ is the number of rows and columns. If it’s a not-square matrix, then ‘n’ is the number of rows and ‘m’ the number of columns. Or vice-versa; it’s your matrix. If we’re looking for an item in a list, ‘n’ is the number of items in the list. If we’re looking to evaluate a polynomial, ‘n’ is the order of the polynomial.

In normal circumstances we don’t work out how many steps some operation does take. It’s more useful to know that multiplying these two long numbers would take about 900 steps than that it would need only 816. And so this gives us an asymptotic estimate. We get an estimate of how much longer cracking the combination lock will take if there’s more letters to pick from. This allowing that some poor soul will get the combination A-B-C.

There are a couple ways to describe how long this will take. The more common is the Big-O. This is just the letter, like you find between N and P. Since that’s easy, many have taken to using a fancy, vaguely cursive O, one that looks like $\mathcal{O}$. I agree it looks nice. Particularly, though, we write $\mathcal{O}(f(n))$, where f is some function. In practice, we’ll see functions like $\mathcal{O}(n)$ or $\mathcal{O}(n^2 \log(n))$ or $\mathcal{O}(n^3)$. Usually something simple like that. It can be tricky. There’s a scheme for multiplying large numbers together that’s $\mathcal{O}(n \cdot 2^{\sqrt{2 log (n)}} \cdot log(n))$. What you will not see is something like $\mathcal{O}(\sin (n))$, or $\mathcal{O}(n^3 - n^4)$ or such. This comes to what we mean by the Big-O.

It’ll be convenient for me to have a name for the actual number of steps the algorithm takes. Let me call the function describing that g(n). Then g(n) is $\mathcal{O}(f(n))$ if once n gets big enough, g(n) is always less than C times f(n). Here c is some constant number. Could be 1. Could be 1,000,000. Could be 0.00001. Doesn’t matter; it’s some positive number.

There’s some neat tricks to play here. For example, the function ‘ $n$‘ is $\mathcal{O}(n)$. It’s also $\mathcal{O}(n^2)$ and $\mathcal{O}(n^9)$ and $\mathcal{O}(e^{n})$. The function ‘ $n^2$‘ is also $\mathcal{O}(n^2)$ and those later terms, but it is not $\mathcal{O}(n)$. And you can see why $\mathcal{O}(\sin(n))$ is right out.

There is also a Little-O notation. It, too, is an upper bound on the function. But it is a stricter bound, setting tighter restrictions on what g(n) is like. You ask how it is the stricter bound gets the minuscule letter. That is a fine question. I think it’s a quirk of history. Both symbols come to us through number theory. Big-O was developed first, published in 1894 by Paul Bachmann. Little-O was published in 1909 by Edmund Landau. Yes, the one with the short Hilbert-like list of number theory problems. In 1914 G H Hardy and John Edensor Littlewood would work on another measure and they used Ω to express it. (If you see the letter used for Big-O and Little-O as the Greek omicron, then you see why a related concept got called omega.)

What makes the Little-O measure different is its sternness. g(n) is $o(f(n))$ if, for every positive number C, whenever n is large enough g(n) is less than or equal to C times f(n). I know that sounds almost the same. Here’s why it’s not.

If g(n) is $\mathcal{O}(f(n))$, then you can go ahead and pick a C and find that, eventually, $g(n) \le C f(n)$. If g(n) is $o(f(n))$, then I, trying to sabotage you, can go ahead and pick a C, trying my best to spoil your bounds. But I will fail. Even if I pick, like a C of one millionth of a billionth of a trillionth, eventually f(n) will be so big that $g(n) \le C f(n)$. I can’t find a C small enough that f(n) doesn’t eventually outgrow it, and outgrow g(n).

This implies some odd-looking stuff. Like, that the function n is not $o(n)$. But the function n is at least $o(n^2)$, and $o(n^9)$ and those other fun variations. Being Little-O compels you to be Big-O. Big-O is not compelled to be Little-O, although it can happen.

These definitions, for Big-O and Little-O, I’ve laid out from algorithmic complexity. It’s implicitly about functions defined on the counting numbers. But there’s no reason I have to limit the ideas to that. I could define similar ideas for a function g(x), with domain the real numbers, and come up with an idea of being on the order of f(x).

We make some adjustments to this. The important one is that, with algorithmic complexity, we assumed g(n) had to be a positive number. What would it even mean for something to take minus four steps to complete? But a regular old function might be zero or negative or change between negative and positive. So we look at the absolute value of g(x). Is there some value of C so that, when x is big enough, the absolute value of g(x) stays less than C times f(x)? If it does, then g(x) is $\mathcal{O}(f(x))$. Is it the case that for every positive number C it’s true that g(x) is less than C times f(x), once x is big enough? Then g(x) is $o(f(x))$.

Fine, but why bother defining this?

A compelling answer is that it gives us a way to describe how different a function is from an approximation to that function. We are always looking for approximations to functions because most functions are hard. We have a small set of functions we like to work with. Polynomials are great numerically. Exponentials and trig functions are great analytically. That’s about all the functions that are easy to work with. Big-O notation particularly lets us estimate how bad an error we make using the approximation.

For example, the Runge-Kutta method numerically approximates solutions to ordinary differential equations. It does this by taking the information we have about the function at some point x to approximate its value at a point x + h. ‘h’ is some number. The difference between the actual answer and the Runge-Kutta approximation is $\mathcal{O}(h^4)$. We use this knowledge to make sure our error is tolerable. Also, we don’t usually care what the function is at x + h. It’s just what we can calculate. What we want is the function at some point a fair bit away from x, call it x + L. So we use our approximate knowledge of conditions at x + h to approximate the function at x + 2h. And use x + 2h to tell us about x + 3h, and from that x + 4h and so on, until we get to x + L. We’d like to have as few of these uninteresting intermediate points as we can, so look for as big an h as is safe.

That context may be the more common one. We see it, particularly, in Taylor Series and other polynomial approximations. For example, the sine of a number is approximately: $\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} + \mathcal{O}(x^{11})$

This has consequences. It tells us, for example, that if x is about 0.1, this approximation is probably pretty good. So it is: the sine of 0.1 (radians) is about 0.0998334166468282 and that’s exactly what five terms here gives us. But it also warns that if x is about 10, this approximation may be gibberish. And so it is: the sine of 10.0 is about -0.5440 and the polynomial is about 1448.27.

The connotation in using Big-O notation here is that we look for small h’s, and for $\mathcal{O}(x)$ to be a tiny number. It seems odd to use the same notation with a large independent variable and with a small one. The concept carries over, though, and helps us talk efficiently about this different problem.

## My All 2020 Mathematics A to Z: Statistics

I owe Mr Wu, author of the Singapore Maths Tuition blog, thanks for another topic for this A-to-Z. Statistics is a big field of mathematics, and so I won’t try to give you a course’s worth in 1500 words. But I have to start with a question. I seem to have ended at two thousand words. Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

# Statistics.

Is statistics mathematics?

The answer seems obvious at first. Look at a statistics textbook. It’s full of algebra. And graphs of great sloped mounds. There’s tables full of four-digit numbers in back. The first couple chapters are about probability. They’re full of questions about rolling dice and dealing cards and guessing whether the sibling who just entered is the younger.

But then, why does Rutgers University have a Department of Mathematics and also a Department of Statistics? And considered so distinct as to have an interdisciplinary mathematics-and-statistics track? It’s not an idiosyncrasy of Rutgers. Many schools have the same division between mathematics and statistics. Some join them into a Department of Mathematics and Statistics. But the name hints at something just different about the field. Not too different, though. Physics and Chemistry and important threads of Economics and History are full of mathematics. But you never see a Department of Mathematics and History.

Thinking of the field’s history, though, and its use, tell us more. Some of the earliest work we now recognize as statistics was Arab mathematicians deciphering messages. This cryptanalysis is the observation that (in English) a three-letter word is very likely to be ‘the’, mildly likely to be ‘one’, and not likely to be ‘pyx’. A more modern forerunner is the Republic of Venice supposedly calculating that war with Milan would not be worth the winning. Or the gatherings of mortality tables, recording how many people of what age can be expected to die any year, and what from. (Mortality tables are another of Edmond Halley’s claims to fame, though it won’t displace his comet work.) Florence Nightingale’s charts explaining how more soldiers die of disease than in fighting the Crimean War. William Sealy Gosset sharing sample-testing methods developed at the Guinness brewery.

You see a difference in kind to a mathematical question like finding a square with the same area as this trapezoid. It’s not that mathematics is not practical; it’s always been. And it’s not that statistics lacks abstraction and pure mathematics content. But statistics wears practicality in a way that number theory won’t.

Practical about what? History and etymology tip us off. The early uses of things we now see as statistics are about things of interest to the State. Decoding messages. Counting the population. Following — in the study of annuities — the flow of money between peoples. With the industrial revolution, statistics sneaks into the factory. To have an economy of scale you need a reliable product. How do you know whether the product is reliable, without testing every piece? How can you test every beer brewed without drinking it all?

One great leg of statistics — it’s tempting to call it the first leg, but the history is not so neat as to make that work — is descriptive. This gives us things like mean and median and mode and standard deviation and quartiles and quintiles. These try to let us represent more data than we can really understand in a few words. We lose information in doing so. But if we are careful to remember the difference between the descriptive statistics we have and the original population? (nb, a word of the State) We might not do ourselves much harm.

Another great leg is inferential statistics. This uses tools with names like z-score and the Student t distribution. And talk about things like p-values and confidence intervals. Terms like correlation and regression and such. This is about looking for causes in complex scenarios. We want to believe there is a cause to, say, a person’s lung cancer. But there is no tracking down what that is; there are too many things that could start a cancer, and too many of them will go unobserved. But we can notice that people who smoke have lung cancer more often than those who don’t. We can’t say why a person recovered from the influenza in five days. But we can say people who were vaccinated got fewer influenzas, and ones that passed quicker, than those who did not. We can get the dire warning that “correlation is not causation”, uttered by people who don’t like what the correlation suggests may be a cause.

Also by people being honest, though. In the 1980s geologists wondered if the sun might have a not-yet-noticed companion star. Its orbit would explain an apparent periodicity in meteor bombardments of the Earth. But completely random bombardments would produce apparent periodicity sometimes. It’s much the same way trees in a forest will sometimes seem to line up. Or imagine finding there is a neighborhood in your city with a high number of arrests. Is this because it has the highest rate of street crime? Or is the rate of street crime the same as any other spot and there are simply more cops here? But then why are there more cops to be found here? Perhaps they’re attracted by the neighborhood’s reputation for high crime. It is difficult to see through randomness, to untangle complex causes, and to root out biases.

The tools of statistics, as we recognize them, largely came together in the 19th and early 20th century. Adolphe Quetelet, a Flemish scientist, set out much early work, including introducing the concept of the “average man”. He studied the crime statistics of Paris for five years and noticed how regular the numbers were. The implication, to Quetelet — who introduced the idea of the “average man”, representative of societal matters — was that crime is a societal problem. It’s something we can control by mindfully organizing society, without infringing anyone’s autonomy. Put like that, the study of statistics seems an obvious and indisputable good, a way for governments to better serve their public.

So here is the dispute. It’s something mathematicians understate when sharing the stories of important pioneers like Francis Galton or Karl Pearson. They were eugenicists. Part of what drove their interest in studying human populations was to find out which populations were the best. And how to help them overcome their more-populous lessers.

I don’t have the space, or depth of knowledge, to fully recount the 19th century’s racial politics, popular scientific understanding, and international relations. Please accept this as a loose cartoon of the situation. Do not forget the full story is more complex and more ambiguous than I write.

One of the 19th century’s greatest scientific discoveries was evolution. That populations change in time, in size and in characteristics, even budding off new species, is breathtaking. Another of the great discoveries was entropy. This incorporated into science the nostalgic romantic notion that things used to be better. I write that figuratively, but to express the way the notion is felt.

There are implications. If the Sun itself will someday wear out, how long can the Tories last? It was easy for the aristocracy to feel that everything was quite excellent as it was now and dread the inevitable change. This is true for the aristocracy of any country, although the United Kingdom had a special position here. The United Kingdom enjoyed a privileged position among the Great Powers and the Imperial Powers through the 19th century. Note we still call it the Victorian era, when Louis Napoleon or Giuseppe Garibaldi or Otto von Bismarck are more significant European figures. (Granting Victoria had the longer presence on the world stage; “the 19th century” had a longer presence still.) But it could rarely feel secure, always aware that France or Germany or Russia was ready to displace it.

And even internally: if Darwin was right and reproductive success all that matters in the long run, what does it say that so many poor people breed so much? How long could the world hold good things? Would the eternal famines and poverty of the “overpopulated” Irish or Indian colonial populations become all that was left? During the Crimean War, the British military found a shocking number of recruits from the cities were physically unfit for service. In the 1850s this was only an inconvenience; there were plenty of strong young farm workers to recruit. But the British population was already majority-urban, and becoming more so. What would happen by 1880? 1910?

One can follow the reasoning, even if we freeze at the racist conclusions. And we have the advantage of a century-plus hindsight. We can see how the eugenic attitude leads quickly to horrors. And also that it turns out “overpopulated” Ireland and India stopped having famines once they evicted their colonizers.

Does this origin of statistics matter? The utility of a hammer does not depend on the moral standing of its maker. The Central Limit Theorem has an even stronger pretense to objectivity. Why not build as best we can with the crooked timbers of mathematics?

It is in my lifetime that a popular racist book claimed science proved that Black people were intellectual inferiors to White people. This on the basis of supposedly significant differences in the populations’ IQ scores. It proposed that racism wasn’t a thing, or at least nothing to do anything about. It would be mere “realism”. Intelligence Quotients, incidentally, are another idea we can trace to Francis Galton. But an IQ test is not objective. The best we can say is it might be standardized. This says nothing about the biases built into the test, though, or of the people evaluating the results.

So what if some publisher 25 years ago got suckered into publishing a bad book? And racist chumps bought it because they liked its conclusion?

The past is never fully past. In the modern environment of surveillance capitalism we have abundant data on any person. We have abundant computing power. We can find many correlations. This gives people wild ideas for “artificial intelligence”. Something to make predictions. Who will lose a job soon? Who will get sick, and from what? Who will commit a crime? Who will fail their A-levels? At least, who is most likely to?

These seem like answerable questions. One can imagine an algorithm that would answer them fairly. And make for a better world, one which concentrates support around the people most likely to need it. If we were wise, we would ask our friends in the philosophy department about how to do this. Or we might just plunge ahead and trust that since an algorithm runs automatically it must be fair. Our friends in the philosophy department might have some advice there too.

Consider, for example, the body mass index. It was developed by our friend Adolphe Quetelet, as he tried to understand the kinds of bodies in the population. It is now used to judge whether someone is overweight. Weight is treated as though it were a greater threat to health than actual illnesses are. Your diagnosis for the same condition with the same symptoms will be different — and on average worse — if your number says 25.2 rather than 24.8.

We must do better. We can hope that learning how tools were used to injure people will teach us to use them better, to reduce or to avoid harm. We must fight our tendency to latch on to simple ideas as the things we can understand in the world. We must not mistake the greater understanding we have from the statistics for complete understanding. To do this we must have empathy, and we must have humility, and we must understand what we have done badly in the past. We must catch ourselves when we repeat the patterns that brought us to past evils. We must do more than only calculate.

This and the rest of the 2020 A-to-Z essays should be at this link. All the essays from every A-to-Z series should be gathered at this link. And I am looking for V, W, and X topics to write about. Thanks for your thoughts, and thank you for reading.

## My All 2020 Mathematics A to Z: Big-O and Little-O Notation

Mr Wu, author of the Singapore Maths Tuition blog, asked me to explain a technical term today. I thought that would be a fun, quick essay. I don’t learn very fast, do I?

A note on style. I make reference here to “Big-O” and “Little-O”, capitalizing and hyphenating them. This is to give them visual presence as a name. In casual discussion they’re just read, or said, as the two words or word-and-a-letter. Often the Big- or Little- gets dropped and we just talk about O. An O, without further context, in my experience means Big-O.

The part of me that wants smooth consistency in prose urges me to write “Little-o”, as the thing described is represented with a lowercase ‘o’. But Little-o sounds like a midway game or an Eyerly Aircraft Company amusement park ride. And I never achieve consistency in my prose anyway. Maybe for the book publication. Until I’m convinced another is better, though, “Little-O” it is. Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

# Big-O and Little-O Notation.

When I first went to college I had a campus post office box. I knew my box number. I also knew the length of the sluggish line for the combination lock code. The lock was a dial, lettered A through J. Being a young STEM-class idiot I thought, boy, would it actually be quicker to pick the lock than wait for the line? A three-letter combination, of ten options? That’s 1,000 possibilities. If I could try five a minute that’s, at worst, three hours 20 minutes. Combination might be anywhere in that set; I might get lucky. I could expect to spend 80 minutes picking my lock.

I decided to wait in line instead, and good that I did. I was unaware lock settings might not be a letter, like ‘A’. It could be the midway point between adjacent letters, like ‘AB’. That meant there were eight times as many combinations as I estimated, and I could expect to spend over ten hours. Even the slow line was faster than that. It transpired that my combination had two of these midway letters.

But that’s a little demonstration of algorithmic complexity. Also in cracking passwords by trial-and-error. Doubling the set of possible combination codes octuples the time it takes to break into the set. Making the combination longer would also work; each extra letter would multiply the cracking time by twenty. So you understand why your password should include “special characters” like punctuation, but most of all should be long.

We’re often interested in how long to expect a task to take. Sometimes we’re interested in the typical time it takes. Often we’re interested in the longest it could ever take. If we have a deterministic algorithm, we can say. We can count how many steps it takes. Sometimes this is easy. If we want to add two two-digit numbers together we know: it will be, at most, three single-digit additions plus, maybe, writing down a carry. (To add 98 and 37 is adding 8 + 7 to get 15, to add 9 + 3 to get 12, and to take the carry from the 15, so, 1 + 12 to get 13, so we have 135.) We can get a good quarrel going about what “a single step” is. We can argue whether that carry into the hundreds column is really one more addition. But we can agree that there is some smallest bit of arithmetic work, and proceed from that.

For any algorithm we have something that describes how big a thing we’re working on. It’s often ‘n’. If we need more than one variable to describe how big it is, ‘m’ gets called up next. If we’re estimating how long it takes to work on a number, ‘n’ is the number of digits in the number. If we’re thinking about a square matrix, ‘n’ is the number of rows and columns. If it’s a not-square matrix, then ‘n’ is the number of rows and ‘m’ the number of columns. Or vice-versa; it’s your matrix. If we’re looking for an item in a list, ‘n’ is the number of items in the list. If we’re looking to evaluate a polynomial, ‘n’ is the order of the polynomial.

In normal circumstances we don’t work out how many steps some operation does take. It’s more useful to know that multiplying these two long numbers would take about 900 steps than that it would need only 816. And so this gives us an asymptotic estimate. We get an estimate of how much longer cracking the combination lock will take if there’s more letters to pick from. This allowing that some poor soul will get the combination A-B-C.

There are a couple ways to describe how long this will take. The more common is the Big-O. This is just the letter, like you find between N and P. Since that’s easy, many have taken to using a fancy, vaguely cursive O, one that looks like $\mathcal{O}$. I agree it looks nice. Particularly, though, we write $\mathcal{O}(f(n))$, where f is some function. In practice, we’ll see functions like $\mathcal{O}(n)$ or $\mathcal{O}(n^2 \log(n))$ or $\mathcal{O}(n^3)$. Usually something simple like that. It can be tricky. There’s a scheme for multiplying large numbers together that’s $\mathcal{O}(n \cdot 2^{\sqrt{2 log (n)}} \cdot log(n))$. What you will not see is something like $\mathcal{O}(\sin (n))$, or $\mathcal{O}(n^3 - n^4)$ or such. This comes to what we mean by the Big-O.

It’ll be convenient for me to have a name for the actual number of steps the algorithm takes. Let me call the function describing that g(n). Then g(n) is $\mathcal{O}(f(n))$ if once n gets big enough, g(n) is always less than C times f(n). Here c is some constant number. Could be 1. Could be 1,000,000. Could be 0.00001. Doesn’t matter; it’s some positive number.

There’s some neat tricks to play here. For example, the function ‘ $n$‘ is $\mathcal{O}(n)$. It’s also $\mathcal{O}(n^2)$ and $\mathcal{O}(n^9)$ and $\mathcal{O}(e^{n})$. The function ‘ $n^2$‘ is also $\mathcal{O}(n^2)$ and those later terms, but it is not $\mathcal{O}(n)$. And you can see why $\mathcal{O}(\sin(n))$ is right out.

There is also a Little-O notation. It, too, is an upper bound on the function. But it is a stricter bound, setting tighter restrictions on what g(n) is like. You ask how it is the stricter bound gets the minuscule letter. That is a fine question. I think it’s a quirk of history. Both symbols come to us through number theory. Big-O was developed first, published in 1894 by Paul Bachmann. Little-O was published in 1909 by Edmund Landau. Yes, the one with the short Hilbert-like list of number theory problems. In 1914 G H Hardy and John Edensor Littlewood would work on another measure and they used Ω to express it. (If you see the letter used for Big-O and Little-O as the Greek omicron, then you see why a related concept got called omega.)

What makes the Little-O measure different is its sternness. g(n) is $o(f(n))$ if, for every positive number C, whenever n is large enough g(n) is less than or equal to C times f(n). I know that sounds almost the same. Here’s why it’s not.

If g(n) is $\mathcal{O}(f(n))$, then you can go ahead and pick a C and find that, eventually, $g(n) \le C f(n)$. If g(n) is $o(f(n))$, then I, trying to sabotage you, can go ahead and pick a C, trying my best to spoil your bounds. But I will fail. Even if I pick, like a C of one millionth of a billionth of a trillionth, eventually f(n) will be so big that $g(n) \le C f(n)$. I can’t find a C small enough that f(n) doesn’t eventually outgrow it, and outgrow g(n).

This implies some odd-looking stuff. Like, that the function n is not $o(n)$. But the function n is at least $o(n^2)$, and $o(n^9)$ and those other fun variations. Being Little-O compels you to be Big-O. Big-O is not compelled to be Little-O, although it can happen.

These definitions, for Big-O and Little-O, I’ve laid out from algorithmic complexity. It’s implicitly about functions defined on the counting numbers. But there’s no reason I have to limit the ideas to that. I could define similar ideas for a function g(x), with domain the real numbers, and come up with an idea of being on the order of f(x).

We make some adjustments to this. The important one is that, with algorithmic complexity, we assumed g(n) had to be a positive number. What would it even mean for something to take minus four steps to complete? But a regular old function might be zero or negative or change between negative and positive. So we look at the absolute value of g(x). Is there some value of C so that, when x is big enough, the absolute value of g(x) stays less than C times f(x)? If it does, then g(x) is $\mathcal{O}(f(x))$. Is it the case that for every positive number C it’s true that g(x) is less than C times f(x), once x is big enough? Then g(x) is $o(f(x))$.

Fine, but why bother defining this?

A compelling answer is that it gives us a way to describe how different a function is from an approximation to that function. We are always looking for approximations to functions because most functions are hard. We have a small set of functions we like to work with. Polynomials are great numerically. Exponentials and trig functions are great analytically. That’s about all the functions that are easy to work with. Big-O notation particularly lets us estimate how bad an error we make using the approximation.

For example, the Runge-Kutta method numerically approximates solutions to ordinary differential equations. It does this by taking the information we have about the function at some point x to approximate its value at a point x + h. ‘h’ is some number. The difference between the actual answer and the Runge-Kutta approximation is $\mathcal{O}(h^4)$. We use this knowledge to make sure our error is tolerable. Also, we don’t usually care what the function is at x + h. It’s just what we can calculate. What we want is the function at some point a fair bit away from x, call it x + L. So we use our approximate knowledge of conditions at x + h to approximate the function at x + 2h. And use x + 2h to tell us about x + 3h, and from that x + 4h and so on, until we get to x + L. We’d like to have as few of these uninteresting intermediate points as we can, so look for as big an h as is safe.

That context may be the more common one. We see it, particularly, in Taylor Series and other polynomial approximations. For example, the sine of a number is approximately: $\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} + \mathcal{O}(x^{11})$

This has consequences. It tells us, for example, that if x is about 0.1, this approximation is probably pretty good. So it is: the sine of 0.1 (radians) is about 0.0998334166468282 and that’s exactly what five terms here gives us. But it also warns that if x is about 10, this approximation may be gibberish. And so it is: the sine of 10.0 is about -0.5440 and the polynomial is about 1448.27.

The connotation in using Big-O notation here is that we look for small h’s, and for $\mathcal{O}(x)$ to be a tiny number. It seems odd to use the same notation with a large independent variable and with a small one. The concept carries over, though, and helps us talk efficiently about this different problem.

I hope this week to post the Playful Math Education Blog Carnival for September. Any educational or recreational or fun mathematics sites you know about would be greatly helpful to me and them. Thanks for your help.

Lastly, I am open for mathematics topics starting with P, Q, and R to write about next month. I’ve basically chosen my ‘P’ subject, though I’d be happy to hear alternatives for ‘Q’ and ‘R’ yet.