## Reading the Comics, July 6, 2016: Another Busy Week Edition

It’s supposed to be the summer vacation. I don’t know why Comic Strip Master Command is so eager to send me stuff. Maybe my standards are too loose. This doesn’t even cover all of last week’s mathematically-themed comics. I’ll need another that I’ve got set for Tuesday. I don’t mind.

Corey Pandolph and Phil Frank and Joe Troise’s The Elderberries rerun for the 3rd features one of my favorite examples of applied probability. The game show Deal or No Deal offered contestants the prize within a suitcase they picked, or a dealer’s offer. The offer would vary up or down as non-selected suitcases were picked, giving the chance for people to second-guess themselves. It also makes a good redemption game. The banker’s offer would typically be less than the expectation value, what you’d get on average from all the available suitcases. But now and then the dealer offered more than the expectation value and I got all ready to yell at the contestants.

This particular strip focuses on a smaller question: can you pick which of the many suitcases held the grand prize? And with the right setup, yes, you can pick it reliably.

Mac King and Bill King’s Magic in a Minute for the 3rd uses a bit of arithmetic to support a mind-reading magic trick. The instructions say to start with a number from 1 to 10 and do various bits of arithmetic which lead inevitably to 4. You can prove that for an arbitrary number, or you can just try it for all ten numbers. That’s tedious but not hard and it’ll prove the inevitability of 4 here. There aren’t many countries with names that start with ‘D’; Denmark’s surely the one any American (or European) reader is likeliest to name. But Dominica, the Dominican Republic, and Djibouti would also be answers. (List Of Countries Of The World.com also lists Dhekelia, which I never heard of either.) Anyway, with Denmark forced, ‘E’ almost begs for ‘elephant’. I suppose ’emu’ would do too, or ‘echidna’. And ‘elephant’ almost forces ‘grey’ for a color, although ‘white’ would be plausible too. A magician has to know how things like this work.

Werner Wejp-Olsen’s feature Inspector Danger’s Crime Quiz for the 4th features a mathematician as victim of the day’s puzzle murder. I admit I’m skeptical of deathbed identifications of murderers like this, but it would spoil a lot of puzzle mysteries if we disallowed them. (Does anyone know how often a deathbed identification actually happens?) I can’t make the alleged answer make any sense to me. Danger of the trade in murder puzzles.

Kris Straub’s Starship for the 4th uses mathematics as a stand-in for anything that’s hard to study and solve. I’m amused.

John Hambrock’s The Brilliant Mind of Edison lee for the 6th is about the existentialist dread mathematics can inspire. Suppose there is a chance, within any given volume of space, of Earth being made. Well, it happened at least once, didn’t it? If the universe is vast enough, it seems hard to argue that there wouldn’t be two or three or, really, infinitely many versions of Earth. It’s a chilling thought. But it requires some big suppositions, most importantly that the universe actually is infinite. The observable universe, the one we can ever get a signal from, certainly isn’t. The entire universe including the stuff we can never get to? I don’t know that that’s infinite. I wouldn’t be surprised if it’s impossible to say, for good reason. Anyway, I’m not worried about it.

Jim Meddick’s Monty for the 6th is part of a storyline in which Monty is worshipped by tiny aliens who resemble him. They’re a bit nerdy, and calculate before they understand the relevant units. It’s a common mistake. Understand the problem before you start calculating.

## Reading the Comics, July 19, 2015: Rerun Comics Edition

I’m stepping my blog back away from the daily posting schedule. It’s fun, but it’s also exhausting. Sometimes, Comic Strip Master Command helps out. It slowed the rate of mathematically-themed comics just enough.

By this post’s title I don’t mean that my post is a rerun. But several of the comics mentioned happen to be. One of the good — maybe best — things about the appearance of comics on Gocomics.com and ComicsKingdom is that comic strips that have ended, such as Randolph Itch, 2 am or (alas) Cul de Sac can still appear without taking up space. And long-running comic strips such as Luann can have earlier strips be seen to a new audience, again without doing any harm to the newest generation of cartoonists. So, there’s that.

Greg Evans’s Luann Againn (July 13, originally run July 13, 1987) makes a joke of Tiffany not understanding the odds of a contest. That’s amusing enough. Estimating the probability of something happening does require estimating how many things are possible, though, and how likely they are relative to one another. Supposing that every entry in a sweepstakes is equally likely to win seems fair enough. Estimating the number of sweepstakes entries is another problem.

Tom Toles’s Randolph Itch, 2 am (July 13, rerun from July 29, 2002) tells a silly little pirates-and-algebra joke. I like this one for the silliness and the artwork. The only sad thing is there wasn’t a natural way to work equations for a circle into it, so there’d be a use for “r”.

## Reading the Comics, May 4, 2015: Hatless Aliens Edition

I have to make two confessions for this round of mathematics comic strips. First is that I was busy for like two days and missed about a jillion comic strips. So this is the first part of some catching-up to do. The second is that I don’t have a favorite of this bunch. The most interesting, I suppose, is the Mr Boffo, because it lets me get into a little trivia about Albert Einstein. But there’s not any in this bunch that made me smile much or that gave me a juicy topic to discuss. Maybe tomorrow.

Steve Breen and Mike Thompson’s Grand Avenue ran a week of snarky-answers-to-word-problems strips. April 28th, April 30th, and May 2nd featured mathematics questions. This must reflect how easy it is to undermine the logic of a mathematics question. The April 27th strip is about using Roman numerals, which I suppose is arithmetic. I’m not sure there’s much point to learning Roman numerals. We don’t do any calculations using the Roman numeral scheme except to show why Arabic numerals are better. All you get from Roman numerals is an ability to read building cornerstones and movie copyright dates. At least learning cursive handwriting provides the learner with a way to make illegible notes.

## Reading The Comics, October 20, 2014: No Images This Edition

Since I started including Comics Kingdom strips in my roundups of mathematically-themed strips I’ve been including images of those, because I’m none too confident that Comics Kingdom’s pages are accessible to normal readers after some time has passed. Gocomics.com has — as far as I’m aware, and as far as anyone has told me — no such problems, so I haven’t bothered doing more than linking to them. So this is the first roundup in a long while I remember that has only Gocomics strips, with nothing from Comics Kingdom. It’s also the first roundup for which I’m fairly sure I’ve done one of these strips before.

Guy Endore-Kaiser and Rodd Perry and Dan Thompson’s Brevity (October 15, but a rerun) is an entry in the anthropomorphic-numbers line of mathematics comics, and I believe it’s one that I’ve already mentioned in the past. This particular strip is a rerun; in modern times the apparently indefatigable Dan Thompson has added this strip to the estimated fourteen he does by himself. In any event it stands out in the anthropomorphic-numbers subgenre for featuring non-integers that aren’t pi.

Ralph Hagen’s The Barn (October 16) ponders how aliens might communicate with Earthlings, and like pretty much everyone who’s considered the question mathematics is supposed to be the way they’d do it. It’s easy to see why mathematics is plausible as a universal language: a mathematical truth should be true anywhere that deductive logic holds, and it’s difficult to conceive of a universe existing in which it could not hold true. I have somewhere around here a mention of a late-19th-century proposal to try contacting Martians by planting trees in Siberia which, in bloom, would show a proof of the Pythagorean theorem.

In modern times we tend to think of contact with aliens being done by radio more likely (or at least some modulated-light signal), which makes a signal like a series of pulses counting out prime numbers sound likely. It’s easy to see why prime numbers should be interesting too: any species that has understood multiplication has almost certainly noticed them, and you can send enough prime numbers in a short time to make clear that there is a deliberate signal being sent. For comparison, perfect numbers — whose factors add up to the original number — are also almost surely noticed by any species that understands multiplication, but the first several of those are 6, 28, 496, and 8,128; by the time 8,128 pulses of anything have been sent the whole point of the message has been lost.

And yet finding prime numbers is still not really quite universal. You or I might see prime numbers as key, but why not triangular numbers, like the sequence 1, 3, 6, 10, 15? Why not square or cube numbers? The only good answer is, well, we have to pick something, so to start communicating let’s hope we find something that everyone will be able to recognize. But there’s an arbitrariness that can’t be fully shed from the process.

John Zakour and Scott Roberts’s Maria’s Day (October 17) reminds us of the value of having a tutor for mathematics problems — if you’re having trouble in class, go to one — and of paying them appropriately.

Steve Melcher’s That Is Priceless (October 17) puts comic captions to classic paintings and so presented Jusepe de Ribera’s 1630 Euclid, Letting Me Copy His Math Homework. I confess I have a broad-based ignorance of art history, but if I’m using search engines correctly the correct title was actually … Euclid. Hm. It seems like Melcher usually has to work harder at these things. Well, I admit it doesn’t quite match my mental picture of Euclid, but that would have mostly involved some guy in a toga wielding a compass. Ribera seems to have had a series of Greek Mathematician pictures from about 1630, including Pythagoras and Archimedes, with similar poses that I’ll take as stylized representations of the great thinkers.

Mark Anderson’s Andertoons (October 18) plays around statistical ideas that include expectation values and the gambler’s fallacy, but it’s a good puzzle: has the doctor done the procedure hundreds of times without a problem because he’s better than average at it, or because he’s been lucky? For an alternate formation, baseball offers a fine question: Ted Williams is the most recent Major League Baseball player to have a season batting average over .400, getting a hit in at least two-fifths of his at-bats over the course of the season. Was he actually good enough to get a hit that often, though, or did he just get lucky? Consider that a .250 hitter — with a 25 percent chance of a hit at any at-bat — could quite plausibly get hits in three out of his four chances in one game, or for that matter even two or three games. Why not a whole season?

Well, because at some point it becomes ridiculous, rather the way we would suspect something was up if a tossed coin came up tails thirty times in a row. Yes, possibly it’s just luck, but there’s good reason to suspect this coin doesn’t have a fifty percent chance of coming up heads, or that the hitter is likely to do better than one hit for every four at-bats, or, to the original comic, that the doctor is just better at getting through the procedure without complications.

Ryan North’s quasi-clip-art Dinosaur Comics (October 20) thrilled the part of me that secretly wanted to study language instead by discussing “light verb constructions”, a grammatical touch I hadn’t paid attention to before. The strip is dubbed “Compressed Thesis Comics”, though, from the notion that the Tyrannosaurus Rex is inspired to study “computationally” what forms of light verb construction are more and what are less acceptable. The impulse is almost perfect thesis project, really: notice a thing and wonder how to quantify it. A good piece of this thesis would probably be just working out how to measure acceptability of a particular verb construction. I imagine the linguistics community has a rough idea how to measure these or else T Rex is taking on way too big a project for a thesis, since that’d be an obvious point for the thesis to crash against.

Well, I still like the punch line.