The last full week of the year had, again, comic strips that mostly mention mathematics without getting into detail. That’s all right. I have a bit of a cold so I’m happy not to have to compose thoughts about too many of them.
John Zakour and Scott Roberts’s Maria’s Day for the 22nd has Maria finishing, and losing, her mathematics homework. I suppose the implication’s that she couldn’t hope to reconstruct it before class. It’s not like she could re-write a short essay for history, though.
Percy Crosby’s Skippy for the 23rd has Skippy and Sookie doing the sort of story problem arithmetic of working out a total bill. The strip originally ran the 11th of August, 1932.
Cy Olson’s Office Hours for the 24th, which originally ran the 14th of October, 1971, comes the nearest to having enough to talk about here. The secretary describes having found five different answers in calculating the profits and so used the highest one. The joke is on incompetent secretaries, yes. But it is respectable, if trying to understand something very complicated, to use several different models for what one wants to know. These will likely have different values, although how different they are, and how changes in one model tracks changes in another, can be valuable. We’re accustomed to this, at least in the United States, by weather forecasts: any local weather report will describe expected storms by different models. These use different ideas about how much moisture moves into the air, how fast raindrops will form (a very difficult problem), how winds will shift, that sort of thing. It’s defensible to make similar different models for reporting the health of a business, particularly if company owns things with a price that can’t be precisely stated.
Marguerite Dabaie and Tom Hart’s Ali’s House for the 24th continues a story from the week before in which a character imagines something tossing us out of three-dimensional space. A seven-dimensional space is interesting mathematically. We can define a cross product between vectors in three-dimensional space and in seven-dimensional space. Most other spaces don’t allow something like a cross product to be coherently defined. Seven-dimensional space also allows for something called the “exotic sphere”, which I hadn’t heard of before either. It’s a structure that’s topologically a sphere, but that has a different kind of structure. This isn’t unique to seven-dimensional space. It’s not known whether four-dimensional space has exotic spheres, although many spaces higher than seven dimensions have them.
Gordon Bess’s Redeye for the 25th of December has Pokey asking his horse Loco to do arithmetic. There’s a long history of animals doing, or seeming to do, arithmetic. The strip originally ran the 23rd of August, 1973.
As I referenced on Sunday while there were a good number of comic strips mentioning mathematics last week, there weren’t many touching deeply enough for me to make real essays about them. But you may enjoy seeing the strips anyway. So here’s the first half of this roster.
Greg Cravens’s The Buckets for the 16th has Toby discovering a personal need for arithmetic. Accounting doesn’t get much praise from us mathematics majors, but it’s deserving of attention.
Carol Lay’s Lay Lines for the 16th feels to me like a narrative version of the liar’s paradox. On studying the story I’m not sure I can justify that. But it feels like it to me.
Terry Beatty’s Rex Morgan, M.D. for the 17th has young Sarah Morgan not wanting to do the mathematics of counting days to Christmas. Or working out the number of days to Christmas. (And for those who don’t know, I regularly do recaps of the plot in Rex Morgan, M.D. on my other blog. I plan to get to this strip the first week in January, but the older essay will catch you up to October and it’s not like “family at Christmas” needs a lot of backstory even in the story strips.)
There were a bunch of mathematically-themed comic strips this past week. A lot of them are ones I’d seen before. One of them is a bit risque and I’ve put that behind a cut. This saves me the effort of thinking up a good nonsense name to give this edition, so there’s that going for me too.
Bill Amend’s FoxTrot Classics for the 24th of May ought to have run last Sunday, but I wasn’t able to make time to write about it. It’s part of a sequence of Jason tutoring Paige in geometry. She’s struggling with the areas of common shapes which is relatable. Many of these area formulas could be kept straight by thinking back to rectangles. The size of the area is equal to the length of the base times the length of the height. From that you could probably reason right away the area of a trapezoid. It would have the same area as a rectangle with a base of length the mean length of the trapezoid’s different-length sides. The parallelogram works like the rectangle, length of the base times the length of the height. That you can convince yourself of by imagining the parallelogram. Then imagine slicing a right triangle off one of its sides. Move that around to the other side. Put it together right and you have a rectangle. Already know the area of a rectangle. The triangle, then, you can get by imagining two triangles of the same size and shape. Rotate one of the triangles 180 degrees. Slide it over, so the two triangles touch. Do this right and you have a parallelogram and so you know the area. The triangle’s half the area of that parallelogram.
The circle, I don’t know. I think just remember that if someone says “pi” they’re almost certainly going to follow it with either “r squared” or “day”. One of those suggests an area; the other doesn’t. Best I can do.
Allison Barrows’s PreTeena rerun for the 27th discusses self-esteem as though it were a good thing that children ought to have. This is part of the strip’s work to help build up the Old Person Complaining membership that every comics section community group relies on. But. There is mathematics in Jeri’s homework. Not mathematics in the sense of something particular to calculate. There’s just nothing to do there. But it is mathematics, and useful mathematics, to work out the logic of how to satisfy multiple requirements. Or, if it’s impossible to satisfy them all at once, then to come as near satisfying them as possible. These kinds of problems are considered optimization or logistics problems. Most interesting real-world examples are impossibly hard, or at least become impossibly hard before you realize it. You can make a career out of doing as best as possible in the circumstances.
Charles Schulz’s Peanuts rerun for the 27th features an extended discussion by Lucy about the nature of … well, she explicitly talks about “nothing”. Is she talking about zero? Probably; you have to get fairly into mathematics or philosophy to start worrying about the difference between the number zero and the idea of nothing. In Algebra, mathematicians learn to work with systems of things that work like numbers enough that you can add and subtract and multiply them together, without committing to the idea that they’re working with numbers. They will have something that works like zero, though, a “nothing” that can be added to or subtracted from anything without changing it. And for which multiplication turns something into that “nothing”.
Charles Schulz’s Peanuts rerun for the 27th of May, 2018. It originally ran the 30th of May, 1971. This strip originally ran during a time when, in-continuity, the Little Red-Haired Girl had moved away and Charlie Brown was coping with having never spoken to her. At some point she moved back, possibly because Schulz felt he had done everything he could with that or possibly because he forgot she had moved away.
I’m with Charlie Brown in not understanding where Lucy was going with all this, though. Maybe she lost the thread herself.
Mark Anderson’sAndertoons for the 28th is Mark Anderson’sAndertoons for the week. Wavehead’s worried about the verbs of both squaring and rounding numbers. Will say it’s a pair of words with contrary alternate meanings that I hadn’t noticed before. I have always taken the use of “square” to reflect, well, if you had a square with sides of size 4, then you’d have a square with area of size 16. The link seems obvious and logical. So on reflection that’s probably not at all where English gets it from. I mean, not to brag or anything but I’ve been speaking English all my life. If I’ve learned anything about it, it’s that the origin is probably something daft like “while Tisquantum [Squanto] was in England he impressed locals with his ability to do arithmetic and his trick of multiplying one number by itself got nicknamed squantuming, which got shortened to squaning to better fit the meter in a music-hall song about him, and a textbook writer in 1704 thought that was a mistake and `corrected’ it to squaring and everyone copied that”. I’m not even going to venture a guess about the etymology of “rounding”.
Marguerite Dabaie and Tom Hart’s Ali’s House for the 28th sets up a homework-help session over algebra. Can’t say where exactly Maisa is going wrong. Her saying “x equals 30 but the train equals” looks like trouble to me. It’s often good practice to start by writing out what are the things in the problem that seem important. And what symbol one wants each to mean. And what one knows about the relationship between these things. It helps clarify why someone would want to do that instead of something else. This is a new comic strip tag and I don’t think I’ve ever had cause to discuss it before.
Hilary Price’s Rhymes With Orange for the 29th is a Rubik’s Cube joke. I’ve counted that as mathematical enough, usually. The different ways that you can rotate parts of the cube form a group. This is something like what I mentioned in the Peanuts discussion. The different rotations you can do can be added to or subtracted from each other, the way numbers can. (Multiplication I’m wary about.)