Playful Math Education Blog Carnival 141


This is the 141st Playful Math Education Blog Carnival. And I will be taking this lower-key than I have past times I was able to host the carnival. I do not have higher keys available this year.

The Numbers

I will start by borrowing a page from Iva Sallay, kind creator and host of FindTheFactors.com, and say some things about 141. I owe Iva Sallay many things, including this comfortable lead-in to the post, and my participation in the Playful Math Education Blog Carnival. She was also kind enough to send me many interesting blogs and pages and I am grateful.

141 is a centered pentagonal number. It’s like 1 or 6 or 16 that way. That is, if I give you six pennies and ask you to do something with it, a natural thing is one coin in the center and a pentagon around that. With 16 coins, you can add a nice regular pentagon around that, one that reaches three coins from vertex to vertex. 31, 51, 76, and 106 are the next couple centered pentagonal numbers. 181 and 226 are the next centered pentagonal numbers. The units number in these follow a pattern, too, in base ten. The last digits go 1-6-6-1, 1-6-6-1, 1-6-6-1, and so on.

141’s also a hendecagonal number. That is, arrange your coins to make a regular 11-sided polygon. 1 and then 11 are hendecagonal numbers. Then 30, 58, 95, and 141. 196 and 260 are the next couple. There are many of these sorts of polygonal numbers, for any regular polygon you like.

141 is also a Hilbert Prime, a class of number I hadn’t heard of before. It’s still named for the Hilbert of Hilbert’s problems. 141 is not a prime number, which you notice from adding up the digits. But a Hilbert Prime is a different kind of beast. These come from looking at counting numbers that are one more than a whole multiple of four. So, numbers like 1, 5, 9, 13, and so on. This sequence describes a lot of classes of numbers. A Hilbert Prime, at least as some number theorists use it, is a Hilbert Number that can’t be divided by any other Hilbert Number (other than 1). So these include 5, 9, 13, 17, and 21, and some of those are already not traditional primes. There are Hilbert Numbers that are the products of different sets of Hilbert Primes, such as 441 or 693. (441 is both 21 times 21 and also 9 times 49. 693 is 9 times 77 and also 21 times 33) So I don’t know what use Hilbert Primes are specifically. If someone knows, I’d love to hear.

Banner art the Playful Math Education Blog Carnival, showing three carousel figures (a bear, a coati, and a horse). The background is a stream of mathematical symbols in gradients of blue-green and yellow light.
Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

Landscape

I first want to thank Denise Gaskins for organizing the Playful Math Education Blog Carnival. It must be always a challenging and exhausting task and to carry it on for years is a great effort. The plan for the next several hosts of the Carnival is here, and if you would like to host a month, it’s a good place to volunteer.

For myself, you’re already looking at my mathematics blog. My big, ambitious project for this year is The All 2020 Mathematics A-to-Z. Each Wednesday I try to publish a long-form piece explaining some piece of mathematics. This week, I should reach the letter P. If you’d like to suggest a topic for the letters Q or R please leave a comment here. My other major project, Reading the Comics and writing about their mathematical content, is on hiatus. I’ll likely get back to it once the A-to-Z is finished.

One of my newer regular readers is Laura, teacher and tutor and author of the MathSux2: Putting math into normal people language blog. There’s new essays every week.

Grassy field with a long string of cars approaching, and groups of people walking the opposite direction. There is no hint that there's an amusement park anywhere in frame.
Second round of overflow parking at Dorney Park. From a visit we took in August of 2014, you remember, that day everybody in eastern Pennsylvania, north Jersey, and southern New York State decided to go to Dorney Park. All these amusement park pictures are ones I’ve taken and I’m happy to say, truthfully, that they’re all connected to something in the main text.

Features

A friend knowing me well shared the Stand-Up Maths video Why is there no equation for the perimeter of an ellipse? The friend knew me well. I once assigned the problem, without working it out, to a vector-calculus class. The integral to do this formula is easy to write. It’s one of the many, many integrals that can’t be done. Attempting to do it leads to fascinating formulas, as seen in the video. And also to elliptic curves, a major research topic in mathematics.

Christian Lawson-Perfect, writing at The Aperiodical, looked at The enormous difficulty of telling the truth about escalators with statistics. Lawson-Perfect saw a sign claiming the subway station’s escalators worked 95% of the time. What did that mean? Defining what it means to have “escalators working” is a challenge. And it’s hard to define “95% of the time” in a way that harmonizes with our intuitions.

Also, at the risk of causing trouble, The Aperiodical also hosts a monthly Carnival of Mathematics. It’s a similar gathering of interesting mathematics content. It doesn’t look necessarily for educational or playful pieces.

I do not have a Desmos account. It’s been long enough since I had a real class that I haven’t yet joined the site. This may need to change. Christopher Sewards posted a set of activities in Permutations and Combinations which may be useful. There’s three so far and they may be joined by more. This I learned through Dan Meyer’s weekly roundup of links.

Meyer’s also made me aware of TheCalt, a mathematics tournament to be held the 17th of October. They’re taking signups even now. Here’s a page with three sample problems for guidance.

Sarah Carter similarly attempts a Monday Must-Reads collection at the MathEqualsLove blog. Given the disruptions of this year this was the first in the series in months. This collects a good number of links, many of them about being interesting while doing online classes.

Photograph of a model of the Montana Rusa roller coaster, under glass, and watched over by a Alebrije-styled dragon-ish figure. It sits on the platform for a roller coaster.
Montaña Rusa, in Mexico City, seen in 2018. It’s one of three Möbius-strip wooden roller coasters in existence.

Helene Osana writes Mathematical thinking begins in the early years with dialogue and real-world exploration. This is an essay about priming the mathematical thinking for the youngest children, those up to about five years old. One can encourage kids with small, casual activities that don’t look like education.

The Reflective Educator posted Precision In Language. This is about one of the hardest bits of teaching. That is to say things which are true and which can’t be mis-remembered as something false. Author David Wees points out an example of this hazard, as kids apply rules outside their context.

Simon Gregg’s essay The Gardener and the Carpenter follows a connected theme. The experience students have with a thing can be different depending on how the teacher presents it. The lead example of Gregg’s essay is about the different ways students played with a toy depending on how the teacher prompted them to explore it.

Also crossing my desk this month was a couple-year-old article Melinda D Anderson published in The Atlantic. How Does Race Affect a Student’s Math Education? Mathematics affects a pose of being a culturally-independent, value-neutral study. The conclusions it draws might be. But what we choose to study, and how we choose to study it, is not. And how we teach it is socially biased and determined. So here are thoughts about that.

The last several links describe things we know thanks to modern psychology and neuroscience studies. Nicklas Balboa and Richard D Glaser published in Psychology Today Three Habits That Reduce Conversational Success. There are conversations which are, effectively, teaching attempts. To be aware of how those attempts go wrong, and how to fix them, is surely worth while.

Ben Orlin, of the popular Math With Bad Drawings blog, wrote Democracy isn’t math. But it isn’t NOT math. He contributed recently to David Litt’s Democracy In One Book Or Less. The broad goal of democracy, the setting of social rules by common consensus, might not be mathematical. When we look to the practical matters of implementing this, though, then we get a lot of mathematics. I have not read Litt’s book, or any recently-published book, so can’t say anything about its contents. I bet it includes Arrow’s Impossibility Theorem, though.

Photograph of the lift hill for a wooden roller coaster, taken with the sunlight gleaming on the tracks. Standing traverse to the end of the coaster in front is another roller coaster, a steel coaster with a more scaffold-like structure and seen in silhouette against the blue sky.
Lift hill for Thunderhawk, Dorney Park’s antique wooden roller coaster. Behind it, if I’ve got this right, is Steel Force, a much taller steel coaster. Photo from August 2014.

Anyone attempting to teach this year is having a heck of a time. Sarah Carter offered Goals for the 2020-2021 School Year – PANDEMIC STYLE as an attempt to organize planning. And shared her goals, which may help other people too.

Emelina Minero offered 8 Strategies to Improve Participation in Your Virtual Classroom. Class participation was always the most challenging part of my teaching, when I did any of that, and this was face-to-face. Online is a different experience, with different challenges. That there is usually the main channel of voice chat and the side channel of text offers new ways to get people to share, though.

The National Centre for Excellence in the Teaching of Mathematics offered Two Pleas to Maths Teachers at the Start of the School Year. This is about how to keep the unusual circumstances of the whole year from encouraging bad habits. This particularly since no one is on track, or near it.

S Leigh Nataro, of the MathTeacher24 blog, writes Learning Math is Social: We Are in This Together. Many teachers have gotten administrative guidance that … doesn’t … guide well. The easy joke is to say it never did. But the practical bits of most educational strategies we learn from long experience. There’s no comparable experience here. What are ways to reduce the size of the crisis? Nataro has thoughts.

Enlightenment

Now I can come to more bundles of things to teach. Colleen Young gathered Maths at school … and at home, bundles of exercises and practice sheets. One of the geometry puzzles, about the missing lengths in the perimeter of a hexagon, brings me a smile as this is a sort of work I’ve been doing for my day job.

Starting Points Maths has a page of Radian Measure — Intro. The goal here is building comfort in the use of radians as angle measure. Mathematicians tend to think in radians. The trigonometric functions for radian measure behave well. Derivatives and integrals are easy, for example. We do a lot of derivatives and integrals. The measures look stranger, is all, especially as they almost always involve fractions times π.

Small swing ride, in mid-ride-cycle, with the swings lifted into the air and tilted. There are only two people on the whole ride and they are barely visible against the silhouette of background trees.
(Children’s) swing ride at Seabreeze Park in Rochester, New York (2019). It was a cool day when we visited.

The Google Images picture gallery How Many? offers a soothing and self-directed counting puzzle. Each picture is a collection of things. How to count them, and even what you choose to count, is yours to judge.

Miss Konstantine of MathsHKO posted Area (Equal — Pythagorean Triples). Miss Konstantine had started with Pythagorean triplets, sets of numbers that can be the legs of a right triangle. And then explored other families of shapes that can have equal areas, including looking to circles and rings.

Sarah Carter makes another appearance here with New Puzzle: Only ‘Takes’ and ‘Adds’. This is in part about the challenge of finding new puzzles to make each week. And then an arithmetic challenge. Carter mentions how one presentation is quite nice for how it teaches so many rules of the puzzle.

Cassandra Lowry with the Australian Mathematical Sciences Institute offers Finding the Maths in Books. This is about how to read a book to find mathematical puzzles within. This is for children up to about second grade. The problems are about topics like counting and mapping and ordering.

Lowry also has Helping Your Child Learn Time, using both analog and digital clocks. That lets me mention a recent discussion with my love, who teaches. My love’s students were not getting the argument that analog clocks can offer a better sense of how time is elapsing. I had what I think a compelling argument: an analog clock is like a health bar, a digital clock like the count of hit points. Logic tells me this will communicate well.

YummyMath’s Fall Equinox 2020 describes some of the geometry of the equinoxes. It also offers questions about how to calculate the time of daylight given one’s position on the Earth. This is one of the great historic and practical uses for trigonometry.

Games

To some play! Miguel Barral wrote Much More Than a Diversion: The Mathematics of Solitaire. There are many kinds of solitaire, which is ultimately just a game that can be played alone. They’re all subject to study through game theory. And to questions like “what is the chance of winning”? That’s often a question best answered by computer simulation. Working out that challenge helped create Monte Carlo methods. These can find approximate solutions to problems too difficult to find perfect solutions for.

At Bedtime Math, Laura Overdeck wrote How Do Doggie Treats Taste? And spun this into some basic arithmetic problems built around the fun of giving dogs treats.

Conditional probability is fun. It’s full of questions easy to present and contradicting intuition to solve. Wayne Chadburn’s Big Question explores one of them. It’s based on a problem which went viral a couple years ago, called “Hannah’s Sweet”. I missed the problem when it was getting people mad. But Chadburn explores how to think through the problem.

Photograph of a large carousel, seen by night. The four horses in front are each at a different position despite being in the same column: the white horse nearest the camera is several feet behind the tan horse farther from it, and a grey and a black horse are scattered forward and back of those.
A column of horses at Cedar Point (Ohio)’s Cedar Downs, a racing merry-go-round. The horses move forward and backward in those slots. Also the carousel moves fast, which makes it much better. (October 2019.)

Paul Godding’s 7 Puzzle Blog gives a string of recreational mathematics puzzles. Some include factoring, some include making expressions equal to particular numbers. They’re all things you can do when Slylock Fox printed the Six Differences puzzle too small for your eyes.

FractalKitty has a cute cartoon, No 5-second rule … about how the set of irrational numbers interacts with rationals in basic arithmetic.

Carnivals

Now to some deeper personal interests. I am an amusement park enthusiast: I’ve ridden at least 250 different roller coasters at least once each. This includes all the wooden Möbius-strip roller coasters out there. Also all three racing merry-go-rounds. The oldest roller coaster still standing. And I had hoped, this year, to get to the centennial years for the Jackrabbit roller coaster at Kennywood Amusement Park (Pittsburgh) and Jack Rabbit roller coaster at Seabreeze Park (Rochester, New York). Jackrabbit (with spelling variants) used to be a quite popular roller coaster name.

So plans went awry and it seems unlikely we’ll get to any amusement parks this year. No county fairs or carnivals. We can still go to virtual ones, though. Amusement parks and midway games inspire many mathematical questions. So let’s take some in.

Michigan State University’s Connected Mathematics Program set up set up a string of carnival-style games. The event’s planners figured on then turning the play money into prize raffles but you can also play games. Some are legitimate midway games, such as plinko, spinner wheels, or racing games, too.

Resource Area For Teaching’s Carnival Math offers for preschool through grade six a semi-practical carnival game. There’s different goals for different education levels.

Hooda Math’s Carnival Fun offers a series of games, many of them Flash, a fair number HTML5, and mostly for kindergraden through 8th grade. There are a lot of mathematics games here, along with some physics and word games.

Photograph of a couple of midway games: Knock It Off (a milk-cans game), Hot Shots (basketball game), Cat Rack (knocking over cat figures), and Balloon Darts (a pop-the-balloons game). No one is playing them yet and it's not clear they're attended.
Some midway gaves on offer at Seabreeze Park in Rochester, New York (2019). It was a slow day and the park had just opened minutes before.

I found interesting the talk about Math Midway, a touring exhibition meant to make mathematics ideas tactile. I’m not sure it’s still a going concern, though. Its schedule lists it as being at the Singapore Science Centre from February 2016 to present. But it’s not mentioned on the Singapore Science Centre’s page. (They do have a huge Tesla coil, though. Also they at least used to have an Albert Einstein animatronic, forever ascending and descending a rope. I enjoyed visiting it, although I would recommend going to the Tiger Balm Gardens as higher prioerity.) Still, exploring this did lead me to The National Museum of Mathematics, located in New York City. It has a fair number of exhibits and its events online.

Rides

But enough of the carnival as a generic theme. How about specific, actual rides and games? Theme Park Insider, one of the web’s top amusement-park-industry news, published Master the Midway: The Theme Park Insider Guide to Winning Carnival Games several years ago. The take from midway games is an expression of the Law of Large Numbers. The number of prizes won and their value will fluctuate day to day, but the averages will be predictable. And what players can do to better their chances is subject to reason.

Specific rides, though, are always beautiful and worth looking at. Ann-Marie Pendrill’s Rotating swings—a theme with variations looks at rotating swing rides. These have many kinds of motion and many can be turned into educational problems. Pendrill looks at some of them. There are other articles recommended by this, which seem relevant, but this was the only article I found which I had permission to read in full. Your institution might have better access.

Lin McMullin’s The Scrambler, or A Family of Vectors at the Amusement Park looks at the motion of the most popular thrill ride out there. (There are more intense rides. But they’re also ones many people feel are too much for them. Few people in a population think the Scrambler is too much for them.) McMullin uses the language of vectors to examine what path the rider traces out during a ride, and what they say about velocity and acceleration. These are all some wonderful shapes.

Evening photograph of a Scrambler, yellow and lit by its neon tube lighting. The greater focus is on the Googie-style Scrambler ride sign, self-illuminated in panels of rectangles rising and falling around the baseline and in a gorgeous thin typeface.
You may have wondered on a Scrambler ride how long it takes to get back to the same ground position. The answer is that it depends on just how the pieces rotate. (Lakeside Park, Denver, visited in June 2018.)

And Amusement Parks

Many amusement parks host science and mathematics education days. In fact I’ve never gone to the opening day of my home park, Michigan’s Adventure, as that’s a short four-hour day filled with area kids. Many of the parks do have activity pages, though, suggesting the kinds of things to think about at a park. Some of the mathematics is things one can use; some is toying with curiosity.

Here’s The State Fair of Texas’s Grade 6 STEM games. I don’t know whether there’s a more recent edition. But also imagine that tasks like counting the traffic flow or thinking about what energies are shown at different times in a ride do not age.

Photograph of a Dentzel antique carousel, focused on a black horse with red-and-white rose-themed saddle and leading the gryphon-themed chariot.
Dorney Park’s antique carousel, which at one time turned in the small Lake Lansing Amusement Park. Photo from August 2014.

Dorney Park, in northeastern Pennsylvania, was never my home park, but it was close. And I’ve had the chance to visit several times. People with Kutztown University, regional high schools, and Dorney Park prepared Coaster Quest – Geometry. These include a lot of observations and measurements all tied to specific rides at the park. (And a side fact, fun for me: Dorney Park’s carousel used to be at Lake Lansing Amusement Park, a few miles from me. Lake Lansing’s park closed in 1972, and the carousel spent several decades at Cedar Point in Ohio before moving to Pennsylvania. The old carousel building at Lake Lansing still stands, though, and I happened to be there a few weeks ago.)

And I have yet to make it to Six Flags America, but their Math & Science In Action page offers a similar roster of activities tied to that park. Six Flags America is their park in Maryland; the one in Illinois is Six Flags Great America.

Math Word Problems Solved offers a booklet of Amusement Park Word Problems Starring Pre-Algebra. These tie in to no particular amusement park. They do draw from real parks, though. For example it lists the highest point on the tallest steel roller coaster as 456 feet; it doesn’t name the ride, but that’s Kingda Ka, at Great Adventure. The highest point on the tallest wooden roller coaster is given as 218 feet, which was true at its 2009 publication: Son of Beast at Kings Island. Sad to say Son Of Beast closed in 2009, and was torn down in 2012. The current record heights in wooden coasters are T Express at Everland in South Korea, and Wildfire at Kolmården in Sweden. (Too much height is not really that good for wooden roller coasters.)

A 2018 posting on Social Mathematics asks: Do height restrictions matter to safety on Roller Coasters? Of course they do, or else we’d have more roller coasters that allowed mice to ride. The question is how much the size restriction matters, and how sensitive that dependence is. So the leading question is a classic example of applying mathematics to the real world. This includes practical subtleties like if a person 39.5 inches tall could ride safely, is it fair to round that off to 40 inches? It also includes the struggle to work out how dangerous an amusement park is.

Speaking from my experience as a rider and lover of amusement parks: don’t try to plead someone’s “close enough”. You’re putting an unfair burden on the ride operator. Accept the rules as posted. Everybody who loves amusement parks has their disappointment stories; accept yours in good grace.


Three roller coasters, one a tall skinny steel coaster, one a chunky white racing wooden coaster, and one a sleek modern wooden roller coaster, seen side-by-side.
Kingda Ka, Rolling Thunder, and El Toro, side by side. Rolling Thunder, itself a racing roller coaster, has since been torn down. Rolling Thunder’s greatest height was 96 feet, on both sides of the train. (Photo from July 2013.)

This leads me into planning amusement park fun. School Specialty’s blog particularly offers PLAY & PLAN: Amusement Park. This is a guide to building an amusement park activity packet for any primary school level. It includes, by the way, some mention of the historical and cultural aspects. That falls outside my focus on mathematics with a side of science here. But there is a wealth of culture in amusement parks, in their rides, their attractions, and their policies.

And to step away from the fun a moment. Many aspects of the struggle to bring equality to Americans are reflected in amusement parks, or were fought by proxy in them. This is some serious matter, and is challenging to teach. Few amusement parks would mention segregation or racist attractions or policies except elliptically. (That midway game where you throw a ball at a clown’s face? The person taking the hit was not always a clown.) Claire Prentice’s The Lost Tribe of Coney Island: Headhunters, Luna Park, and the Man Who Pulled Off the Spectacle of the Century is a book I recommend. It reflects one slice of this history.


Let me resume the fun, by looking to imaginary amusement parks. TeachEngineering’s Amusement Park Ride: Ups and Downs in Design designs and builds model “roller coasters”. This from foam tubes, toothpicks, masking tape, and marbles. It’s easier to build a ride in Roller Coaster Tycoon but that will always lack some of the thrill of having a real thing that doesn’t quite do what you want. The builders of Son Of Beast had the same frustration.

The Howard County Public Schools Office published a Mathatastic Amusement Park worksheet. It uses the problem of finding things on a park map to teach about (Cartesian) coordinates in a well-motivated way.

The Brunswick (Ohio) City Schools published a nice Amusement Park Map Project. It also introduces students to coordinate systems. This by having them lay out and design their own amusement park. It includes introductions to basic shapes. I am surprised reading the requirements that merry-go-rounds aren’t included, as circles. I am delighted that the plan calls for eight to ten roller coasters and a petting zoo, though. That plan works for me.

Cheryl Q Nelson and Nicole L Williams, writing for Mathematics Teacher, published the article Sprinklers and Amusement Parks: What Do They Have To Do With Geometry? Both (water) sprinklers and amusement park vendors are about covering spaces without waste. Someone might wonder at their hypothetical park where the bumper cars are one of the three most popular rides. I recommend a visit, when possible, to Conneaut Lake Park, in northwestern Pennsylvania. Their bumper cars are wild. Their roller coaster’s pretty great too.

And finally a bit of practical yet light news. Dickinson University was happy to share how The Traveling Salesman Problem Finds A Novel Application in Summer Student-Faculty Research Project. The Traveling Salesman Problem is the challenge to find the most efficient way to any set of points. It’s a problem both important and difficult. As you try to get to more points the problem (typically) gets far more difficult. I hadn’t seen it applied to amusement park itineraries before, but that’s a legitimate use. I am disappointed the press release did not share their work on most efficient routes around Hersheypark and Disney World. They did publish a comparison of ways to attack the problem.


Evening photograph showing the outlines of Kingda Ka and El Toro roller coasters against night clouds. A streak of pinpoint lights go over the top of Kingda Ka.
Kingda Ka and El Toro seen by night. It looks like there’s a train going right over the top of El Toro. (Photo from July 2013.)

And this closes the carnival, for today. If you’d like to follow this blog, please click the “Follow NebusReseearch” button the page. Or you can add the articles feed to your favorite RSS reader. My Twitter account @Nebusj is all but moribund. For whatever reason Safari often doesn’t want to let me see it. I am also present and active on Mathstodon. This is the mathematics-themed instance of Mastodon, as @Nebusj@mathstodon.xyz. I would be glad to have more people to chat with there. Thank you as ever for reading.

Checking Back in On That 117-Year-Old Roller Coaster


I apologize to people who want to know the most they can about the comic strips of the past week. I’ve not had time to write about them. Part of what has kept me busy is a visit to Lakemont Park, in Altoona, Pennsylvania. The park has had several bad years, including two years in which it did not open at all. But still standing at the park is the oldest-known roller coaster, Leap The Dips.

My first visit to this park, in 2013, among other things gave me a mathematical question to ask. That is, could any of the many pieces of wood in it be original? How many pieces would you expect?

Two parts of the white-painted-wood roller coaster track. In front is the diagonal lift hill. Behind is a basically horizontal track which has a small dip in the middle.
One of the dips of Leap The Dips. These hills are not large ones. The biggest drop is about nine feet; the coaster is a total of 41 feet high at its greatest. The track goes back and forth in a figure-eight layout several times, and in the middle of each ‘straightaway’ leg is a dip like this.

Problems of this form happen all the time. They turn up whenever there’s something which has a small chance of happening, but many chances to happen. In this case, there’s a small chance that any particular piece of wood will need replacing. But there are a lot of pieces of wood, and they might need replacement at any ride inspection. So there’s an obvious answer to how likely it is any piece of wood would survive a century-plus. And, from that, how much of that wood should be original.

And, since this is a probability question, I found reasons not to believe in this answer. These reasons amount to my doubting that the reality is much like the mathematical abstraction. I even found evidence that my doubts were correct.

Covered station for the roller coaster, with 'LEAP THE DIPS' written in what looks like a hand-painted sign hanging from above. Two roller coaster chairs sit by the station.
The station for the Leap The Dips roller coaster, Lakemont Park, Altoona, Pennsylvania. There are two separate cars visible on the tracks by the station. When I last visited there was only one car on the tracks. The cars have a front and a back seat, and while there is a bar to grab hold of, there are no other restraints, which makes the low-speed ride more exciting.

The sad thing to say about revisiting Lakemont Park — well, one is that the park has lost almost all its amusement park rides. It’s got athletic facilities, and a couple miniature golf courses, but besides two wooden and one kiddie roller coaster, and an antique-cars ride, there’s not much left of its long history as an amusement park. But the other thing is that Leap The Dips was closed when I was able to visit. The ride’s under repairs, and seems to be getting painted too. This is sad, but I hope it implies better things soon.

The Summer 2017 Mathematics A To Z: Quasirandom numbers


Gaurish, host of, For the love of Mathematics, gives me the excuse to talk about amusement parks. You may want to brace yourself. Yes, this essay includes a picture. It would have included a video if I had enough WordPress privileges for that.

Summer 2017 Mathematics A to Z, featuring a coati (it's kind of the Latin American raccoon) looking over alphabet blocks, with a lot of equations in the background.
Art courtesy of Thomas K Dye, creator of the web comic Newshounds. He has a Patreon for those able to support his work. He’s also open for commissions, starting from US$10.

Quasirandom numbers.

Think of a merry-go-round. Or carousel, if you prefer. I will venture a guess. You might like merry-go-rounds. They’re beautiful. They can evoke happy thoughts of childhood when they were a big ride it was safe to go on. But they don’t often make one think of thrills.. They’re generally sedate things. They don’t need to be. There’s no great secret to making a carousel a thrill ride. They knew it a century ago, when all the great American carousels were carved. It’s simple. Make the thing spin fast enough, at the five or six rotations per minute the ride was made for. There are places that do this yet. There’s the Cedar Downs ride at Cedar Point, Sandusky, Ohio. There’s the antique carousel at Crossroads Village, a historical village/park just outside Flint, Michigan. There’s the Derby Racer at Playland in Rye, New York. There’s the carousel in the Merry-Go-Round Museum in Sandusky, Ohio. Any of them are great rides. Two of them have a special edge. I’ll come back to them.

Playland's Derby Racer in motion, at night, featuring a ride operator leaning maybe twenty degrees inward.
Rye (New York) Playland Amusement Park’s is the fastest carousel I’m aware of running. Riders are warned ahead of time to sit so they’re leaning to the left, and the ride will not get up to full speed until the ride operator checks everyone during the ride. To get some idea of its speed, notice the ride operator on the left and how far she leans. She’s not being dramatic; that’s the natural stance. Also the tilt in the carousel’s floor is not camera trickery; it does lean like that. If you have a spare day in the New York City area and any interest in classic amusement parks, this is worth the trip.

Randomness is a valuable resource. We know it’s key to many things. We have major fields of mathematics built on it. We can understand the behavior of variables without ever knowing what value they have. All we need is to know than the chance they might be in some particular range. This makes possible all kinds of problems too complicated to do otherwise. We know it’s critical. Quantum mechanics would not work without randomness. Without quantum mechanics, matter doesn’t work. And that’s true randomness, the kind where something is unpredictable. It’s not the kind of randomness we talk about when we ask, say, what’s the chance someone was born on a Tuesday. That’s mere hidden information: if we knew the month and date and year of a person’s birth we would know whether they were born Tuesday or not. We need more.

So the trouble is actually getting a random number. Well, a sequence of randomly drawn numbers. We rarely need this if we’re doing analysis. We can understand how some process changes the shape of a distribution without ever using the distribution. We can take derivatives of a function without ever evaluating the original function, after all.

But we do need randomly drawn numbers. We do too much numerical work with them. For example, it’s impossible to exactly integrate most functions. Numerical methods can take a ferociously long time to evaluate. A family of methods called Monte Carlo rely on randomly-drawn values to estimate the integral. The results are strikingly good for the work required. But they must have random numbers. The name “Monte Carlo” is not some cryptic code. It is an expression of how randomly drawn numbers make the tool work.

It’s hard to get random numbers. Consider: we can’t write an algorithm to do it. If we were to write one, then we’d be able to predict that the sequence of numbers was. We have some recourse. We could set up instruments to rely on the randomness that seems to be in the world. Thermal fluctuations, for example, created by processes outside any computer’s control, can give us a pleasant dose of randomness. If we need higher-quality random numbers than that we can go to exotic equipment. Geiger counters watching the decay of a not-alarmingly-radioactive sample. Cosmic ray detectors watching the sky.

Or we can write something that produces numbers that look random enough. They won’t really be random, and if we wait long enough we’ll notice the sequence repeats itself. But if we only need, say, ten numbers, who cares if the sequence will repeat after ten million numbers? (We’ll surely need more than ten numbers. But we can postpone the repetition until we’ve drawn far more than ten million numbers.)

Two of the carousels I’ve mentioned have an astounding property. The horses in a file move. I mean, relative to each other. Some horse will start the race in front of its neighbors; some will start behind. The four move forward and back thanks to a mechanism of, I am assured, staggering complexity. There are only three carousels in the world that have it. There’s Cedar Downs at Cedar Point in Sandusky, Ohio; the Racing Downs at Playland in Rye, New York; and the Derby Racer at Blackpool Pleasure Beach in Blackpool, England. The mechanism in Blackpool’s hasn’t operated in years. The one at Playland’s had not run in years, but was restored for the 2017 season. My love and I made a trip specifically to ride that. (You may have heard of a fire at the carousel in Playland this summer. This was of part of the building for their other, non-racing, antique carousel. My last information was that the carousel itself was all right.)

These racing derbies have the horses in a file move forward and back in a “random” way. It’s not truly random. If you knew exactly which gears were underneath each horse, and where in their rotations they were, you could say which horse was about to gain on its partners and which was about to fall back. But all that is concealed from the rider. The horse patterns will eventually, someday, repeat. If the gear cycles aren’t interrupted by maintenance or malfunctions. But nobody’s going to ride any horse long enough to notice. We have in these rides a randomness as good as what your computer makes, at least for the purpose it serves.

Cedar Point's Cedar Downs during the race, showing the blur of the ride's motion.
The racing nature of Playland’s and Cedar Point’s derby racers mean that every ride includes exciting extra moments of overtaking or falling behind your partners to the side. It also means quarreling with your siblings about who really won the race because your horse started like four feet behind your sister’s and it ended only two feet behind so hers didn’t beat yours and, long story short, there was some punching, there was some spitting, and now nobody is gonna be allowed to get ice cream at the Carvel’s (for Playland) or cheese on a stick (for Cedar Point). This is the Cedar Downs ride at Cedar Point, and focuses on the poles that move the horses.

What does it mean to look random? Some things seem obvious. All the possible numbers ought to come up, sooner or later. Any particular possible number shouldn’t repeat too often. Any particular possible number shouldn’t go too long without repeating. There shouldn’t be clumps of numbers; if, say, ‘4’ turns up, we shouldn’t see ‘5’ turn up right away all the time.

We can make the idea of “looking” random quite literal. Suppose we’re selecting numbers from 0 through 9. We can draw the random numbers we’ve picked. Use the numbers as coordinates. Say we pick four digits: 1, 3, 9, and 0. Then draw the point that’s at x-coordinate 13, y-coordinate 90. Then the next four digits. Let’s say they’re 4, 2, 3, and 8. Then draw the point that’s at x-coordinate 42, y-coordinate 38. And repeat. What will this look like?

If it clumps up, we probably don’t have good random numbers. If we see lines that points collect along, or avoid, there’s a good chance our numbers aren’t very random. If there’s whole blocks of space that they occupy, and others they avoid, we may have a defective source of random numbers. We should expect the points to cover a space pretty uniformly. (There are more rigorous, logically sound, methods. The eye can be fooled easily enough. But it’s the same principle. We have some test that notices clumps and gaps.) But …

The thing is, there’s always going to be some clumps. There’ll always be some gaps. Part of randomness is that it forms patterns, or at least things that look like patterns to us. We can describe how big a clump (or gap; it’s the same thing, really) is for any particular quantity of randomly drawn numbers. If we see clumps bigger than that we can throw out the numbers as suspect. But … still …

Toss a coin fairly twenty times, and there’s no reason it can’t turn up tails sixteen times. This doesn’t happen often, but it will happen sometimes. Just luck. This surplus of tails should evaporate as we take more tosses. That is, we most likely won’t see 160 tails out of 200 tosses. We certainly will not see 1,600 tails out of 2,000 tosses. We know this as the Law of Large Numbers. Wait long enough and weird fluctuations will average out.

What if we don’t have time, though? For coin-tossing that’s silly; of course we have time. But for Monte Carlo integration? It could take too long to be confident we haven’t got too-large gaps or too-tight clusters.

This is why we take quasi-random numbers. We begin with what randomness we’re able to manage. But we massage it. Imagine our coins example. Suppose after ten fair tosses we noticed there had been eight tails turn up. Then we would start tossing less fairly, trying to make heads more common. We would be happier if there were 12 rather than 16 tails after twenty tosses.

Draw the results. We get now a pattern that looks still like randomness. But it’s a finer sorting; it looks like static tidied up some. The quasi-random numbers are not properly random. Knowing that, say, the last several numbers were odd means the next one is more likely to be even, the Gambler’s Fallacy put to work. But in aggregate, we trust, we’ll be able to enjoy the speed and power of randomly-drawn numbers. It shows its strengths when we don’t know just how finely we must sample a range of numbers to get good, reliable results.

To carousels. I don’t know whether the derby racers have quasirandom outcomes. I would find believable someone telling me that all the possible orderings of the four horses in any file are equally likely. To know would demand detailed knowledge of how the gearing works, though. Also probably simulations of how the system would work if it ran long enough. It might be easier to watch the ride for a couple of days and keep track of the outcomes. If someone wants to sponsor me doing a month-long research expedition to Cedar Point, drop me a note. Or just pay for my season pass. You folks would do that for me, wouldn’t you? Thanks.

Roller Coaster Immortality Update!


Several years ago I had the chance to go to Lakemont Park, in Altoona, Pennsylvania. It’s a lovely and very old amusement park, featuring the oldest operating roller coaster, Leap The Dips. As roller coasters go it’s not very large and not very fast, but it’s a great ride. It does literally and without exaggeration leap off the track, though not far enough to be dangerous. I recommend the park and the ride to people who have cause to be in the middle of Pennsylvania.

I wondered whether any boards in it might date from the original construction in 1902 by the E Joy Morris company. If we make some assumptions we can turn this into a probability problem. It’s a problem of a type that always seems to be answered 1/e. (The problem is “what is the probability that any particular piece of wood has lasted 100 years, if a piece of wood has a one percent chance of needing replacement every year?”) That’s a probability of about 37 percent. But I doubted this answer meant anything. My skepticism came from wondering why every piece of wood should be equally likely to survive every year. Different pieces serve different structural roles, and will be exposed to the elements differently. How can I be sure that the probability one piece needs replacement is independent of the probability some other piece needs replacement? But if they’re not independent then my calculation doesn’t give a relevant answer.

The Leap-The-Dips roller coaster at Lakemont Park, Altoona, Pennsylvania.
The Leap-The-Dips roller coaster at Lakemont Park, Altoona, Pennsylvania.

A recent post on the Usenet roller coaster enthusiast newsgroup rec.roller-coaster, in a discussion titled “Age a coaster should be preserved”, suggests I was right in my skepticism. Derek Gee writes:

According to the video documentary the park produced around
1999, all of the original upright lumber was found to be in excellent shape.
The E. Joy Morris company had waterproofed it by sealing it in ten coats of
paint and it was old-growth hardwood. All the horizontal lumber was
replaced as I recall.

I am aware this is not an academically rigorous answer to the question of how much of the roller coaster’s original construction is still in place. But it is a lead. It suggests that quite a bit of the antique ride is as antique as could be.

Reading the Comics, January 29, 2015: Returned Motifs Edition


I do occasionally worry that my little blog is going to become nothing but a review of mathematics-themed comic strips, especially when Comic Strip Master Command sends out abundant crops like it has the past few weeks. This week’s offerings bring out the return of a lot of familiar motifs, like fighting with word problems and anthropomorphized numbers; and there’s one strip that suggests a pair of articles I wrote a while back might be useful yet.

Bill Amend’s FoxTrot (January 25, and not a rerun) puts out a little word problem, about what grade one needs to get a B in this class, in the sort of passive-aggressive sniping teachers long to get away with. As Paige notes, it really isn’t a geometry problem, although I wonder if there’s a sensible way to represent it as a geometry problem.

Ruben Bolling’s Super-Fun-Pax Comix superstar Chaos Butterfly appears not just in the January 25th installment but also gets a passing mention in Mark Heath’sSpot the Frog (January 29, rerun). Chaos Butterfly in all its forms seems to be popping up a lot lately; I wonder if it’s something in the air.

Continue reading “Reading the Comics, January 29, 2015: Returned Motifs Edition”

Reading the Comics, July 28, 2014: Homework in an Amusement Park Edition


I don’t think my standards for mathematics content in comic strips are seriously lowering, but the strips do seem to be coming pretty often for the summer break. I admit I’m including one of these strips just because it lets me talk about something I saw at an amusement park, though. I have my weaknesses.

Harley Schwadron’s 9 to 5 (July 25) builds its joke around the ambiguity of saying a salary is six (or some other number) of figures, if you don’t specify what side of the decimal they’re on. That’s an ordinary enough gag, although the size of a number can itself be an interesting thing to know. The number of digits it takes to write a number down corresponds, roughly, with the logarithm of a number, and in the olden days a lot of computations depended on logarithms: multiplying two numbers is equivalent to adding their logarithms; dividing two numbers, subtracting their logarithms. And addition and subtraction are normally easier than multiplication and division. Similarly, raising one number to a power becomes multiplying one number by the logarithm of another, and multiplication is easier than exponentiation. So counting the number of digits in a number might be something anyway.

Steve Breen and Mike Thompson’s Grand Avenue (July 25) has the kids mention something as being “like going to an amusement park to do math homework”, which gives me a chance to share this incident. Last year my love and I were in the Cedar Point amusement park (in Sandusky, Ohio), and went to the coffee shop. We saw one guy sitting at a counter, with his laptop and a bunch of papers sprawled out, looking pretty much like we do when we’re grading papers, and we thought initially that it was so very sad that someone would be so busy at work that (we presumed) he couldn’t even really participate in the family expedition to the amusement park.

And then we remembered: not everybody lives a couple hours away from an amusement park. If we lived, say, fifteen minutes from a park we had season passes to, we’d certainly at least sometimes take our grading work to the park, so we could get it done in an environment we liked and reward ourselves for getting done with a couple roller coasters and maybe the Cedar Downs carousel (which is worth an entry around these parts anyway). To grade, anyway; I’d never have the courage to bring my laptop to the coffee shop. So I guess all I’m saying is, I have a context in which yes, I could imagine going to an amusement park to grade math homework at least.

Wulff and Morgenthaler Truth Facts (July 25) makes a Venn diagram joke in service of asserting that only people who don’t understand statistics would play the lottery. This is an understandable attitude of Wulff and Morgenthaler, and of many, many people who make the same claim. The expectation value — the amount you expect to win some amount, times the probability you will win that amount, minus the cost of the ticket — is negative for all but the most extremely oversized lottery payouts, and the most extremely oversized lottery payouts still give you odds of winning so tiny that you really aren’t hurting your chances by not buying a ticket. However, the smugness behind the attitude bothers me — I’m generally bothered by smugness — and jokes like this one contain the assumption that the only sensible way to live is a ruthless profit-and-loss calculation to life that even Jeremy Bentham might say is a bit much. For the typical person, buying a lottery ticket is a bit of a lark, a couple dollars of disposable income spent because, what the heck, it’s about what you’d spend on one and a third sodas and you aren’t that thirsty. Lottery pools with coworkers or friends make it a small but fun social activity, too. That something is a net loss of money does not mean it is necessarily foolish. (This isn’t to say it’s wise, either, but I’d generally like a little more sympathy for people’s minor bits of recreational foolishness.)

Marc Anderson’s Andertoons (July 27) does a spot of wordplay about the meaning of “aftermath”. I can’t think of much to say about this, so let me just mention that Florian Cajori’s A History of Mathematical Notations reports (section 201) that the + symbol for addition appears to trace from writing “et”, meaning and, a good deal and the letters merging together and simplifying from that. This seems plausible enough on its face, but it does cause me to reflect that the & symbol also is credited as a symbol born from writing “et” a lot. (Here, picture writing Et and letting the middle and lower horizontal strokes of the E merge with the cross bar and the lowest point of the t.)

Berkeley Breathed’s Bloom County (July 27, rerun from, I believe, July of 1988) is one of the earliest appearances I can remember of the Grand Unification appearing in popular culture, certainly in comic strips. Unifications have a long and grand history in mathematics and physics in explaining things which look very different by the same principles, with the first to really draw attention probably being Descartes showing that algebra and geometry could be understood as a single thing, and problems difficult in one field could be easy in the other. In physics, the most thrilling unification was probably the explaining of electricity, magnetism, and light as the same thing in the 19th century; being able to explain many varied phenomena with some simple principles is just so compelling. General relativity shows that we can interpret accelerations and gravitation as the same thing; and in the late 20th century, physicists found that it’s possible to use a single framework to explain both electromagnetism and the forces that hold subatomic particles together and that break them apart.

It’s not yet known how to explain gravity and quantum mechanics in the same, coherent, frame. It’s generally assumed they can be reconciled, although I suppose there’s no logical reason they have to be. Finding a unification — or a proof they can’t be unified — would certainly be one of the great moments of mathematical physics.

The idea of the grand unification theory as an explanation for everything is … well, fair enough. A grand unification theory should be able to explain what particles in the universe exist, and what forces they use to interact, and from there it would seem like the rest of reality is details. Perhaps so, but it’s a long way to go from a simple starting point to explaining something as complicated as a penguin. I guess what I’m saying is I doubt Oliver would notice the non-existence of Opus in the first couple pages of his work.

Thom Bluemel’s Birdbrains (July 28) takes us back to the origin of numbers. It also makes me realize I don’t know what’s the first number that we know of people discovering. What I mean is, it seems likely that humans are just able to recognize a handful of numbers, like one and two and maybe up to six or so, based on how babies and animals can recognize something funny if the counts of small numbers of things don’t make sense. And larger numbers were certainly known to antiquity; probably the fact that numbers keep going on forever was known to antiquity. And some special numbers with interesting or difficult properties, like pi or the square root of two, were known so long ago we can’t say who discovered them. But then there are numbers like the Euler-Mascheroni constant, which are known and recognized as important things, and we can say reasonably well who discovered them. So what is the first number with a known discoverer?

Why I Don’t Believe It’s 1/e




The above picture, showing the Leap-the-Dips roller coaster at Lakemont Park before its renovation, kind of answers why despite my neat reasoning and mental calculations I don’t really believe that there’s a chance of something like one in three that any particular board from the roller coaster’s original, 1902, construction is still in place. The picture — from the end of the track, if I’m not mistaken — dates to shortly before the renovation of the roller coaster began in the late 90s. Leap-the-Dips had stood without operating, and almost certainly without maintenance, from 1986 (coincidental to the park’s acquisition by the Boyer Candy company and its temporary renaming as Boyertown USA, in miniature imitation of Hershey Park) to 1998.

The result of this period seems almost to demand replacing every board in the thing. But we don’t know that happened, and after all, surely some boards took it better than others, didn’t they? Not every board was equally exposed to the elements, or to vandalism, or to whatever does smash up wood. And there’s a lot of pieces of wood that go into a wooden roller coaster. Surely some were lucky by virtue of being in the right spot?

Continue reading “Why I Don’t Believe It’s 1/e”

Why I Say 1/e About This Roller Coaster


The Leap-The-Dips at Lakemont Park, Altoona, Pennsylvania, as photographed by Joseph Nebus in July 2013 from the edge of the launch platform.

So in my head I worked out an estimate of about one in three that any particular board would have remained from the Leap-The-Dips’ original, 1902, configuration, even though I didn’t really believe it. Here’s how I got that figure.

First, you have to take a guess as to how likely it is that any board is going to be replaced in any particular stretch of time. Guessing that one percent of boards need replacing per year sounded plausible, what with how neatly a chance of one-in-a-hundred fits with our base ten numbering system, and how it’s been about a hundred years in operation. So any particular board would have about a 99 percent chance of making it through any particular year. If we suppose that the chance of a board making it through the year is independent — it doesn’t change with the board’s age, or the condition of neighboring boards, or anything but the fact that a year has passed — then the chance of any particular board lasting a hundred years is going to be 0.99^{100} . That takes a little thought to work out if you haven’t got a calculator on hand.

Continue reading “Why I Say 1/e About This Roller Coaster”

Just Answer 1/e Whenever Anyone Asks This Kind Of Question


I recently had the chance to ride the Leap-the-Dips at Lakemont Park (Altoona, Pennsylvania), the world’s oldest operating roller coaster. The statistics of this 1902-vintage roller coaster might not sound impressive, as it has a maximum height of about forty feet and a greatest drop of about nine feet, but it gets rather more exciting when you consider that the roller coaster car hasn’t got any seat belts or lap bar or other restraints (just a bar you can grab onto if you so choose), and that the ride was built before the invention of upstop wheels, the wheels that actually go underneath the track and keep roller coaster cars from jumping off. At each of the dips, yes, the car does jump up and off the track, and the car just keeps accelerating the whole ride. (Side boards ensure that once the car jumps off the tracks it falls back into place.) It’s worth the visit.

Looking at the wonderful mesh of wood that makes up a classic roller coaster like this inspired the question: could any of it be original? What’s the chance that any board in it has lasted the hundred-plus years of the roller coaster’s life (including a twelve-year stretch when the ride was not running, a state which usually means routine maintenance is being skipped and which just destroys amusement park rides)? Taking some reasonable guesses about the replacement rate per year, and a quite unreasonable guess about replacement procedure, I worked out my guess, given in the subject line above, and I figure to come back and explain where that all came from.

A Cedar Point Follow-Up


I’m sure multiple people have a faint memory of several months ago, when I asked a question about getting the best view of something obstructed by a construction fence. The point was to catch the view at the Cedar Point amusement park, where the Disaster Transport bobsled coaster (and its building) and the Space Spiral were being torn out to be replaced with the GateKeeper roller coaster. The point of interest was whether the small collection of buildings which made up the Transport Refreshments stand was being preserved through all the demolition, and as of September 2012, there wasn’t any way to say.

I was happily able to get to Cedar Point this week and can offer the photograph here to show that they did indeed preserve the area. It’s been repainted and retitled, but probably we should have realized the logic: if there was enough need for someplace to sell Cheese on a Stick when the immediately adjacent rides were among the older and less flashy attractions, they’d surely want Cheese on a Stick when a new marquee ride was right across the entrance. (Well, they might have torn down all the buildings and put up new ones, but, they didn’t.)

I admit there’s not really fresh mathematics content here, but maybe someone was curious about the follow-up. There should be a couple of other pictures past the page cut, here.

Continue reading “A Cedar Point Follow-Up”

On Peeking At Cedar Point


A glimpse of the Transport Refreshments stand, in September 2012, hidden from view by the construction fence.

I hadn’t intended to leave unanswered my little question about getting the best view of an obstructed attraction at Cedar Point, and apologize for that. Matters got in my way. And I really want to commend people to Geoffrey Brent’s solution, which avoids calculus in favor of geometric reasoning and so has that nice satisfying nature to it. (The part that turns into gibberish is rot13’d, so as not to spoil people: copy it to the box on Rot13.com and hit ‘Cypher’ to read it if you aren’t able to do the rot13 stuff in your head somehow.)

I do want to work out the solution by calculus methods, though, partly because that was actually easier for me, and partly to see whether my audience will put up with such. I’m trying to figure out how to present a more complicated subject which sure looks like it needs calculus to explain, and I’d like to have some sense whether I can write coherently on that topic so.

To set the stage: the problem was about where to stand, behind a tall obscuring fence, so as to see the greatest view of a building hidden behind the fence. To make for simple enough numbers, the viewer is assumed to have eyes six feet off the ground, the fence is eight feet tall, and the building, four feet beyond the fence, is twelve feet tall. Trusting that the ground is level — the reality isn’t quite, as it is at an amusement park — and that you can get as near or as far from the fence as you like, when does the angle between the top of the building and the top of the fence get its biggest?

Continue reading “On Peeking At Cedar Point”

Peeking At Cedar Point


A glimpse of the Transport Refreshments stand, in September 2012, hidden from view by the construction fence.

Back a couple months I wrote way too much about the problem of how many rides to expect on Cedar Point’s Disaster Transport, if we chose whether to re-ride it based on a random event. It struck me there’s another problem created by the amusement park’s removal of the indoor bobsled roller coaster. This one is based on Transport Refreshments, the block of food and drink stands which stood by the removed Disaster Transport and Space Spiral.

Specifically: what’s to become of that area? When my Dearly Beloved and I visited in late September the area was walled off, for construction, but one could rationalize any kind of fate for it. The block might get torn down to provide space for new rides; it might be left as-is, with the name Transport Refreshments left as a mysterious reference that new visitors would have to learn something of park history to understand; or the stands might be re-themed to the GateKeeper roller coaster being built. By now, probably, park-watchers really know, but when we visited, there wasn’t any telling, except by peeking over the fence.

The problem is you can’t see very much, because the fence is in the way. I’m tall and can hold my camera pretty high and so could get glimpses showing that the buildings hadn’t as of late September been torn down, and that they even had the sign in place, but that doesn’t mean much.

It does suggest a cute problem, though, one that’s easy to solve using calculus and maybe is solvable by easier tools. That problem’s, how do you get the best view of the hidden Transport Refreshments? Going up close to the fence means the fence obscures more of your field of view; getting farther away — the ground is roughly level here — reduces the field of view obscured by the fence, but also reduces the Transport Refreshments’ angular diameter. There’s probably a best spot to see what’s beyond, but, where is it?

To turn this into a word problem, let’s pretend things are nice round numbers: that the person doing the viewing has eyes about six feet off the ground, that the fence is eight feet tall, and that — four feet past the fence — the main sign for the Transport Refreshments stands twelve feet tall. I am sure these arbitrarily plucked numbers will produce only good results.

It Would Have Been One More Ride Because


Some props from the Disaster Transport bobsled coaster are still in use for Halloweekend.

I apologize for being slow writing the conclusion of the explanation for why my Dearly Beloved and I would expect one more ride following our plan to keep re-riding Disaster Transport as long as a fairly flipped coin came up tails. It’s been a busy week, and actually, I’d got stuck trying to think of a way to explain the sum I needed to take using only formulas that a normal person might find, or believe. I think I have it.

Continue reading “It Would Have Been One More Ride Because”

The Help Needed To Get to One


This is a view from a lower vantage point of the Disaster Transport roller coaster car.

So, it’s established that my little series, representing the number of rides we could expect to get if we based re-riding on a fair coin flip, is convergent. So trying to figure out the sum will get a meaningful answer. The question is, how do we calculate it?

My first impulse is to see if someone else solved the problem first, for exactly the reasons you might guess. This is a case where mathematics textbooks can have an advantage over the web, really, since an introduction to calculus book is almost certain to have page after page of Common Series Sums. Figuring out the right combination of keywords to search the web for it can be an act of elaborate guesswork. Mercifully, Wikipedia has a List of Mathematical Series which covers my problem exactly. Almost.

Continue reading “The Help Needed To Get to One”

%d bloggers like this: