## Why Stuff Can Orbit, Part 10: Where Time Comes From And How It Changes Things

Previously:

And again my thanks to Thomas K Dye, creator of the web comic Newshounds, for the banner art. He has a Patreon to support his creative habit.

In the last installment I introduced perturbations. These are orbits that are a little off from the circles that make equilibriums. And they introduce something that’s been lurking, unnoticed, in all the work done before. That’s time.

See, how do we know time exists? … Well, we feel it, so, it’s hard for us not to notice time exists. Let me rephrase it then, and put it in contemporary technology terms. Suppose you’re looking at an animated GIF. How do you know it’s started animating? Or that it hasn’t stalled out on some frame?

If the picture changes, then you know. It has to be going. But if it doesn’t change? … Maybe it’s stalled out. Maybe it hasn’t. You don’t know. You know there’s time when you can see change. And that’s one of the little practical insights of physics. You can build an understanding of special relativity by thinking hard about that. Also think about the observation that the speed of light (in vacuum) doesn’t change.

When something physical’s in equilibrium, it isn’t changing. That’s how we found equilibriums to start with. And that means we stop keeping track of time. It’s one more thing to keep track of that doesn’t tell us anything new. Who needs it?

For the planet orbiting a sun, in a perfect circle, or its other little variations, we do still need time. At least some. How far the planet is from the sun doesn’t change, no, but where it is on the orbit will change. We can track where it is by setting some reference point. Where the planet is at the start of our problem. How big is the angle between where the planet is now, the sun (the center of our problem’s universe), and that origin point? That will change over time.

But it’ll change in a boring way. The angle will keep increasing in magnitude at a constant speed. Suppose it takes five time units for the angle to grow from zero degrees to ten degrees. Then it’ll take ten time units for the angle to grow from zero to twenty degrees. It’ll take twenty time units for the angle to grow from zero to forty degrees. Nice to know if you want to know when the planet is going to be at a particular spot, and how long it’ll take to get back to the same spot. At this rate it’ll be eighteen time units before the angle grows to 360 degrees, which looks the same as zero degrees. But it’s not anything interesting happening.

We’ll label this sort of change, where time passes, yeah, but it’s too dull to notice as a “dynamic equilibrium”. There’s change, but it’s so steady and predictable it’s not all that exciting. And I’d set up the circular orbits so that we didn’t even have to notice it. If the radius of the planet’s orbit doesn’t change, then the rate at which its apsidal angle changes, its “angular velocity”, also doesn’t change.

Now, with perturbations, the distance between the planet and the center of the universe will change in time. That was the stuff at the end of the last installment. But also the apsidal angle is going to change. I’ve used ‘r(t)’ to represent the radial distance between the planet and the sun before, and to note that what value it is depends on the time. I need some more symbols.

There’s two popular symbols to use for angles. Both are Greek letters because, I dunno, they’ve always been. (Florian Cajori’s A History of Mathematical Notation doesn’t seem to have anything. And when my default go-to for explaining mathematician’s choices tells me nothing, what can I do? Look at Wikipedia? Sure, but that doesn’t enlighten me either.) One is to use theta, θ. The other is to use phi, φ. Both are good, popular choices, and in three-dimensional problems we’ll often need both. We don’t need both. The orbit of something moving under a central force might be complicated, but it’s going to be in a single plane of movement. The conservation of angular momentum gives us that. It’s not the last thing angular momentum will give us. The orbit might happen not to be in a horizontal plane. But that’s all right. We can tilt our heads until it is.

So I’ll reach deep into the universe of symbols for angles and call on θ for the apsidal angle. θ will change with time, so, ‘θ(t)’ is the angular counterpart to ‘r(t)’.

I’d said before the apsidal angle is the angle made between the planet, the center of the universe, and some reference point. What is my reference point? I dunno. It’s wherever θ(0) is, that is, where the planet is when my time ‘t’ is zero. There’s probably a bootstrapping fallacy here. I’ll cover it up by saying, you know, the reference point doesn’t matter. It’s like the choice of prime meridian. We have to have one, but we can pick whatever one is convenient. So why not pick one that gives us the nice little identity that ‘θ(0) = 0’? If you don’t buy that and insist I pick a reference point first, fine, go ahead. But you know what? The labels on my time axis are arbitrary. There’s no difference in the way physics works whether ‘t’ is ‘0’ or ‘2017’ or ‘21350’. (At least as long as I adjust any time-dependent forces, which there aren’t here.) So we get back to ‘θ(0) = 0’.

For a circular orbit, the dynamic equilibrium case, these are pretty boring, but at least they’re easy to write. They’re:

$r(t) = a \\ \theta(t) = \omega t$

Here ‘a’ is the radius of the circular orbit. And ω is a constant number, the angular velocity. It’s how much a bit of time changes the apsidal angle. And this set of equations is pretty dull. You can see why it barely rates a mention.

The perturbed case gets more interesting. We know how ‘r(t)’ looks. We worked that out last time. It’s some function like:

$r(t) = a + A cos\left(\sqrt{\frac{k}{m}} t\right) + B sin\left(\sqrt{\frac{k}{m}} t\right)$

Here ‘A’ and ‘B’ are some numbers telling us how big the perturbation is, and ‘m’ is the mass of the planet, and ‘k’ is something related to how strong the central force is. And ‘a’ is that radius of the circular orbit, the thing we’re perturbed around.

What about ‘θ(t)’? How’s that look? … We don’t seem to have a lot to go on. We could go back to Newton and all that force equalling the change in momentum over time stuff. We can always do that. It’s tedious, though. We have something better. It’s another gift from the conservation of angular momentum. When we can turn a forces-over-time problem into a conservation-of-something problem we’re usually doing the right thing. The conservation-of-something is typically a lot easier to set up and to track. We’ve used it in the conservation of energy, before, and we’ll use it again. The conservation of ordinary, ‘linear’, momentum helps other problems, though not I’ll grant this one. The conservation of angular momentum will help us here.

So what is angular momentum? … It’s something about ice skaters twirling around and your high school physics teacher sitting on a bar stool spinning a bike wheel. All right. But it’s also a quantity. We can get some idea of it by looking at the formula for calculating linear momentum:

$\vec{p} = m\vec{v}$

The linear momentum of a thing is its inertia times its velocity. This is if the thing isn’t moving fast enough we have to notice relativity. Also if it isn’t, like, an electric or a magnetic field so we have to notice it’s not precisely a thing. Also if it isn’t a massless particle like a photon because see previous sentence. I’m talking about ordinary things like planets and blocks of wood on springs and stuff. The inertia, ‘m’, is rather happily the same thing as its mass. The velocity is how fast something is travelling and which direction it’s going in.

Angular momentum, meanwhile, we calculate with this radically different-looking formula:

$\vec{L} = I\vec{\omega}$

Here, again, talking about stuff that isn’t moving so fast we have to notice relativity. That isn’t electric or magnetic fields. That isn’t massless particles. And so on. Here ‘I’ is the “moment of inertia” and $\vec{w}$ is the angular velocity. The angular velocity is a vector that describes for us how fast the spinning is and what direction the axis around which the thing spins is. The moment of inertia describes how easy or hard it is to make the thing spin around each axis. It’s a tensor because real stuff can be easier to spin in some directions than in others. If you’re not sure that’s actually so, try tossing some stuff in the air so it spins in each of the three major directions. You’ll see.

We’re fortunate. For central force problems the moment of inertia is easy to calculate. We don’t need the tensor stuff. And we don’t even need to notice that the angular velocity is a vector. We know what axis the planet’s rotating around; it’s the one pointing out of the plane of motion. We can focus on the size of the angular velocity, the number ‘ω’. See how they’re different, what with one not having an arrow over the symbol. The arrow-less version is easier. For a planet, or other object, with mass ‘m’ that’s orbiting a distance ‘r’ from the sun, the moment of inertia is:

$I = mr^2$

So we know this number is going to be constant:

$L = mr^2\omega$

The mass ‘m’ doesn’t change. We’re not doing those kinds of problem. So however ‘r’ changes in time, the angular velocity ‘ω’ has to change with it, so that this product stays constant. The angular velocity is how the apsidal angle ‘θ’ changes over time. So since we know ‘L’ doesn’t change, and ‘m’ doesn’t change, then the way ‘r’ changes must tell us something about how ‘θ’ changes. We’ll get into that next time.

## Why Stuff Can Orbit, Part 9: How The Spring In The Cosmos Behaves

Previously:

First, I thank Thomas K Dye for the banner art I have for this feature! Thomas is the creator of the longrunning web comic Newshounds. He’s hoping soon to finish up special editions of some of the strip’s stories and to publish a definitive edition of the comic’s history. He’s also got a Patreon account to support his art habit. Please give his creations some of your time and attention.

Now back to central forces. I’ve run out of obvious fun stuff to say about a mass that’s in a circular orbit around the center of the universe. Before you question my sense of fun, remember that I own multiple pop histories about the containerized cargo industry and last month I read another one that’s changed my mind about some things. These sorts of problems cover a lot of stuff. They cover planets orbiting a sun and blocks of wood connected to springs. That’s about all we do in high school physics anyway. Well, there’s spheres colliding, but there’s no making a central force problem out of those. You can also make some things that look like bad quantum mechanics models out of that. The mathematics is interesting even if the results don’t match anything in the real world.

But I’m sticking with central forces that look like powers. These have potential energy functions with rules that look like V(r) = C rn. So far, ‘n’ can be any real number. It turns out ‘n’ has to be larger than -2 for a circular orbit to be stable, but that’s all right. There are lots of numbers larger than -2. ‘n’ carries the connotation of being an integer, a whole (positive or negative) number. But if we want to let it be any old real number like 0.1 or π or 18 and three-sevenths that’s fine. We make a note of that fact and remember it right up to the point we stop pretending to care about non-integer powers. I estimate that’s like two entries off.

We get a circular orbit by setting the thing that orbits in … a circle. This sounded smarter before I wrote it out like that. Well. We set it moving perpendicular to the “radial direction”, which is the line going from wherever it is straight to the center of the universe. This perpendicular motion means there’s a non-zero angular momentum, which we write as ‘L’ for some reason. For each angular momentum there’s a particular radius that allows for a circular orbit. Which radius? It’s whatever one is a minimum for the effective potential energy:

$V_{eff}(r) = Cr^n + \frac{L^2}{2m}r^{-2}$

This we can find by taking the first derivative of ‘Veff‘ with respect to ‘r’ and finding where that first derivative is zero. This is standard mathematics stuff, quite routine. We can do with any function whether it represents something physics or not. So:

$\frac{dV_{eff}}{dr} = nCr^{n-1} - 2\frac{L^2}{2m}r^{-3} = 0$

$r = \left(\frac{L^2}{nCm}\right)^{\frac{1}{n + 2}}$

What I’d like to talk about is if we’re not quite at that radius. If we set the planet (or whatever) a little bit farther from the center of the universe. Or a little closer. Same angular momentum though, so the equilibrium, the circular orbit, should be in the same spot. It happens there isn’t a planet there.

This enters us into the world of perturbations, which is where most of the big money in mathematical physics is. A perturbation is a little nudge away from an equilibrium. What happens in response to the little nudge is interesting stuff. And here we already know, qualitatively, what’s going to happen: the planet is going to rock around the equilibrium. This is because the circular orbit is a stable equilibrium. I’d described that qualitatively last time. So now I want to talk quantitatively about how the perturbation changes given time.

Before I get there I need to introduce another bit of notation. It is so convenient to be able to talk about the radius of the circular orbit that would be the equilibrium. I’d called that ‘r’ up above. But I also need to be able to talk about how far the perturbed planet is from the center of the universe. That’s also really hard not to call ‘r’. Something has to give. Since the radius of the circular orbit is not going to change I’m going to give that a new name. I’ll call it ‘a’. There’s several reasons for this. One is that ‘a’ is commonly used for describing the size of ellipses, which turn up in actual real-world planetary orbits. That’s something we know because this is like the thirteenth part of an essay series about the mathematics of orbits. You aren’t reading this if you haven’t picked up a couple things about orbits on your own. Also we’ve used ‘a’ before, in these sorts of approximations. It was handy in the last supplemental as the point of expansion’s name. So let me make that unmistakable:

$a \equiv r = \left(\frac{L^2}{nCm}\right)^{\frac{1}{n + 2}}$

The $\equiv$ there means “defined to be equal to”. You might ask how this is different from “equals”. It seems like more emphasis to me. Also, there are other names for the circular orbit’s radius that I could have used. ‘re‘ would be good enough, as the subscript would suggest “radius of equilibrium”. Or ‘r0‘ would be another popular choice, the 0 suggesting that this is something of key, central importance and also looking kind of like a circle. (That’s probably coincidence.) I like the ‘a’ better there because I know how easy it is to drop a subscript. If you’re working on a problem for yourself that’s easy to fix, with enough cursing and redoing your notes. On a board in front of class it’s even easier to fix since someone will ask about the lost subscript within three lines. In a post like this? It would be a mess.

So now I’m going to look at possible values of the radius ‘r’ that are close to ‘a’. How close? Close enough that ‘Veff‘, the effective potential energy, looks like a parabola. If it doesn’t look much like a parabola then I look at values of ‘r’ that are even closer to ‘a’. (Do you see how the game is played? If you don’t, look closer. Yes, this is actually valid.) If ‘r’ is that close to ‘a’, then we can get away with this polynomial expansion:

$V_{eff}(r) \approx V_{eff}(a) + m\cdot(r - a) + \frac{1}{2} m_2 (r - a)^2$

where

$m = \frac{dV_{eff}}{dr}\left(a\right) \\ m_2 = \frac{d^2V_{eff}}{dr^2}\left(a\right)$

The “approximate” there is because this is an approximation. $V_{eff}(r)$ is in truth equal to the thing on the right-hand-side there plus something that isn’t (usually) zero, but that is small.

I am sorry beyond my ability to describe that I didn’t make that ‘m’ and ‘m2‘ consistent last week. That’s all right. One of these is going to disappear right away.

Now, what $V_{eff}(a)$ is? Well, that’s whatever you get from putting in ‘a’ wherever you start out seeing ‘r’ in the expression for $V_{eff}(r)$. I’m not going to bother with that. Call it math, fine, but that’s just a search-and-replace on the character ‘r’. Also, where I’m going next, it’s going to disappear, never to be seen again, so who cares? What’s important is that this is a constant number. If ‘r’ changes, the value of $V_{eff}(a)$ does not, because ‘r’ doesn’t appear anywhere in $V_{eff}(a)$.

How about ‘m’? That’s the value of the first derivative of ‘Veff‘ with respect to ‘r’, evaluated when ‘r’ is equal to ‘a’. That might be something. It’s not, because of what ‘a’ is. It’s the value of ‘r’ which would make $\frac{dV_{eff}}{dr}(r)$ equal to zero. That’s why ‘a’ has that value instead of some other, any other.

So we’ll have a constant part ‘Veff(a)’, plus a zero part, plus a part that’s a parabola. This is normal, by the way, when we do expansions around an equilibrium. At least it’s common. Good to see it. To find ‘m2‘ we have to take the second derivative of ‘Veff(r)’ and then evaluate it when ‘r’ is equal to ‘a’ and ugh but here it is.

$\frac{d^2V_{eff}}{dr^2}(r) = n (n - 1) C r^{n - 2} + 3\cdot\frac{L^2}{m}r^{-4}$

And at the point of approximation, where ‘r’ is equal to ‘a’, it’ll be:

$m_2 = \frac{d^2V_{eff}}{dr^2}(a) = n (n - 1) C a^{n - 2} + 3\cdot\frac{L^2}{m}a^{-4}$

We know exactly what ‘a’ is so we could write that out in a nice big expression. You don’t want to. I don’t want to. It’s a bit of a mess. I mean, it’s not hard, but it has a lot of symbols in it and oh all right. Here. Look fast because I’m going to get rid of that as soon as I can.

$m_2 = \frac{d^2V_{eff}}{dr^2}(a) = n (n - 1) C \left(\frac{L^2}{n C m}\right)^{n - 2} + 3\cdot\frac{L^2}{m}\left(\frac{L^2}{n C m}\right)^{-4}$

For the values of ‘n’ that we actually care about because they turn up in real actual physics problems this expression simplifies some. Enough, anyway. If we pretend we know nothing about ‘n’ besides that it is a number bigger than -2 then … ugh. We don’t have a lot that can clean it up.

Here’s how. I’m going to define an auxiliary little function. Its role is to contain our symbolic sprawl. It has a legitimate role too, though. At least it represents something that it makes sense to give a name. It will be a new function, named ‘F’ and that depends on the radius ‘r’:

$F(r) \equiv -\frac{dV}{dr}$

Notice that’s the derivative of the original ‘V’, not the angular-momentum-equipped ‘Veff‘. This is the secret of its power. It doesn’t do anything to make $V_{eff}(r)$ easier to work with. It starts being good when we take its derivatives, though:

$\frac{dV_{eff}}{dr} = -F(r) - \frac{L^2}{m}r^{-3}$

That already looks nicer, doesn’t it? It’s going to be really slick when you think about what ‘F(a)’ is. Remember that ‘a’ is the value for ‘r’ which makes the derivative of ‘Veff‘ equal to zero. So … I may not know much, but I know this:

$0 = \frac{dV_{eff}}{dr}(a) = -F(a) - \frac{L^2}{m}a^{-3} \\ F(a) = -\frac{L}{ma^3}$

I’m not going to say what value F(r) has for other values of ‘r’ because I don’t care. But now look at what it does for the second derivative of ‘Veff‘:

$\frac{d^2 V_{eff}}{dr^2}(r) = -F'(r) + 3\frac{L^2}{mr^4}$

Here the ‘F'(r)’ is a shorthand way of writing ‘the derivative of F with respect to r’. You can do when there’s only the one free variable to consider. And now something magic that happens when we look at the second derivative of ‘Veff‘ when ‘r’ is equal to ‘a’ …

$\frac{d^2 V_{eff}}{dr^2}(a) = -F'(a) - \frac{3}{a} F(a)$

We get away with this because we happen to know that ‘F(a)’ is equal to $-\frac{L}{ma^3}$ and doesn’t that work out great? We’ve turned a symbolic mess into a … less symbolic mess.

Now why do I say it’s legitimate to introduce ‘F(r)’ here? It’s because minus the derivative of the potential energy with respect to the position of something can be something of actual physical interest. It’s the amount of force exerted on the particle by that potential energy at that point. The amount of force on a thing is something that we could imagine being interested in. Indeed, we’d have used that except potential energy is usually so much easier to work with. I’ve avoided it up to this point because it wasn’t giving me anything I needed. Here, I embrace it because it will save me from some awful lines of symbols.

Because with this expression in place I can write the approximation to the potential energy of:

$V_{eff}(r) \approx V_{eff}(a) + \frac{1}{2} \left( -F'(a) - \frac{3}{a}F(a) \right) (r - a)^2$

So if ‘r’ is close to ‘a’, then the polynomial on the right is a good enough approximation to the effective potential energy. And that potential energy has the shape of a spring’s potential energy. We can use what we know about springs to describe its motion. Particularly, we’ll have this be true:

$\frac{dp}{dt} = -\frac{dv_{eff}}{dr}(r) = -\left( F'(a) + \frac{3}{a} F(a)\right) r$

Here, ‘p’ is the (linear) momentum of whatever’s orbiting, which we can treat as equal to ‘mr’, the mass of the orbiting thing times how far it is from the center. You may sense in me some reluctance about doing this, what with that ‘we can treat as equal to’ talk. There’s reasons for this and I’d have to get deep into geometry to explain why. I can get away with specifically this use because the problem allows it. If you’re trying to do your own original physics problem inspired by this thread, and it’s not orbits like this, be warned. This is a spot that could open up to a gigantic danger pit, lined at the bottom with sharp spikes and angry poison-clawed mathematical tigers and I bet it’s raining down there too.

So we can rewrite all this as

$m\frac{d^2r}{dt^2} = -\frac{dv_{eff}}{dr}(r) = -\left( F'(a) + \frac{3}{a} F(a)\right) r$

And when we learned everything interesting there was to know about springs we learned what the solutions to this look like. Oh, in that essay the variable that changed over time was called ‘x’ and here it’s called ‘r’, but that’s not an actual difference. ‘r’ will be some sinusoidal curve:

$r(t) = A cos\left(\sqrt{\frac{k}{m}} t\right) + B sin\left(\sqrt{\frac{k}{m}} t\right)$

where, here, ‘k’ is equal to that whole mass of constants on the right-hand side:

$k = -\left( F'(a) + \frac{3}{a} F(a)\right)$

I don’t know what ‘A’ and ‘B’ are. It’ll depend on just what the perturbation is like, how far the planet is from the circular orbit. But I can tell you what the behavior is like. The planet will wobble back and forth around the circular orbit, sometimes closer to the center, sometimes farther away. It’ll spend as much time closer to the center than the circular orbit as it does farther away. And the period of that oscillation will be

$T = 2\pi\sqrt{\frac{m}{k}} = 2\pi\sqrt{\frac{m}{-\left(F'(a) + \frac{3}{a}F(a)\right)}}$

This tells us something about what the orbit of a thing not in a circular orbit will be like. Yes, I see you in the back there, quivering with excitement about how we’ve got to elliptical orbits. You’re moving too fast. We haven’t got that. There will be elliptical orbits, yes, but only for a very particular power ‘n’ for the potential energy. Not for most of them. We’ll see.

It might strike you there’s something in that square root. We need to take the square root of a positive number, so maybe this will tell us something about what kinds of powers we’re allowed. It’s a good thought. It turns out not to tell us anything useful, though. Suppose we started with $V(r) = Cr^n$. Then $F(r) = -nCr^{n - 1}$, and $F'(r) = -n(n - 1)C^{n - 2}$. Sad to say, this leads us to a journey which reveals that we need ‘n’ to be larger than -2 or else we don’t get oscillations around a circular orbit. We already knew that, though. We already found we needed it to have a stable equilibrium before. We can see there not being a period for these oscillations around the circular orbit as another expression of the circular orbit not being stable. Sad to say, we haven’t got something new out of this.

We will get to new stuff, though. Maybe even ellipses.

## Why Stuff Can Orbit, Part 8: Introducing Stability

Previously:

I bet you imagined I’d forgot this series, or that I’d quietly dropped it. Not so. I’ve just been finding the energy for this again. 2017 has been an exhausting year.

With the last essay I finished the basic goal of “Why Stuff Can Orbit”. I’d described some of the basic stuff for central forces. These involve something — a planet, a mass on a spring, whatever — being pulled by the … center. Well, you can call anything the origin, the center of your coordinate system. Why put that anywhere but the place everything’s pulled towards? The key thing about a central force is it’s always in the direction of the center. It can be towards the center or away from the center, but it’s always going to be towards the center because the “away from” case is boring. (The thing gets pushed away from the center and goes far off, never to be seen again.) How strongly it’s pulled toward the center changes only with the distance from the center.

Since the force only changes with the distance between the thing and the center it’s easy to think this is a one-dimensional sort of problem. You only need the coordinate describing this distance. We call that ‘r’, because we end up finding orbits that are circles. Since the distance between the center of a circle and its edge is the radius, it would be a shame to use any other letter.

Forces are hard to work with. At least for a lot of stuff. We can represent central forces instead as potential energy. This is easier because potential energy doesn’t have any direction. It’s a lone number. When we can shift something complicated into one number chances are we’re doing well.

But we are describing something in space. Something in three-dimensional space, although it turns out we’ll only need two. We don’t care about stuff that plunges right into the center; that’s boring. We like stuff that loops around and around the center. Circular orbits. We’ve seen that second dimension in the angular momentum, which we represent as ‘L’ for reasons I dunno. I don’t think I’ve ever met anyone who did. Maybe it was the first letter that came to mind when someone influential wrote a good textbook. Angular momentum is a vector, but for these problems we don’t need to care about that. We can use an ordinary number to carry all the information we need about it.

We get that information from the potential energy plus a term that’s based on the square of the angular momentum divided by the square of the radius. This “effective potential energy” lets us find whether there can be a circular orbit at all, and where it’ll be. And it lets us get some other nice stuff like how the size of the orbit and the time it takes to complete an orbit relate to each other. See the earlier stuff for details. In short, though, we get an equilibrium, a circular orbit, whenever the effective potential energy is flat, neither rising nor falling. That happens when the effective potential energy changes from rising to falling, or changes from falling to rising. Well, if it isn’t rising and if it isn’t falling, what else can it be doing? It only does this for an infinitesimal moment, but that’s all we need. It also happens when the effective potential energy is flat for a while, but that like never happens.

Where I want to go next is into closed orbits. That is, as the planet orbits a sun (or whatever it is goes around whatever it’s going around), does it come back around to exactly where it started? Moving with the same speed in the same direction? That is, does the thing orbit like a planet does?

(Planets don’t orbit like this. When you have three, or more, things in the universe the mathematics of orbits gets way too complicated to do exactly. But this is the thing they’re approximating, we hope, well.)

To get there I’ll have to put back a second dimension. Sorry. Won’t need a third, though. That’ll get named θ because that’s our first choice for an angle. And it makes too much sense to describe a planet’s position as its distance from the center and the angle it makes with respect to some reference line. Which reference line? Whatever works for you. It’s like measuring longitude. We could measure degrees east and west of some point other than Greenwich as well, and as correctly, as we do. We use the one we use because it was convenient.

Along the way to closed orbits I have to talk about stability. There are many kinds of mathematical stability. My favorite is called Lyapunov Stability, because it’s such a mellifluous sound. They all circle around the same concept. It’s what you’d imagine from how we use the word in English. Start with an equilibrium, a system that isn’t changing. Give it a nudge. This disrupts it in some way. Does the disruption stay bounded? That is, does the thing still look somewhat like it did before? Or does the disruption grow so crazy big we have no idea what it’ll ever look like again? (A small nudge, by the way. You can break anything with a big enough nudge; that’s not interesting. It’s whether you can break it with a small nudge that we’d like to know.)

One of the ways we can study this is by looking at the effective potential energy. By its shape we can say whether a central-force equilibrium is stable or not. It’s easy, too, as we’ve got this set up. (Warning before you go passing yourself off as a mathematical physicist: it is not always easy!) Look at the effective potential energy versus the radius. If it has a part that looks like a bowl, cupped upward, it’s got a stable equilibrium. If it doesn’t, it doesn’t have a stable equilibrium. If you aren’t sure, imagine the potential energy was a track, like for a toy car. And imagine you dropped a marble on it. If you give the marble a nudge, does it roll to a stop? If it does, stable. If it doesn’t, unstable.

Stable is more interesting. We look at cases where there is this little bowl cupped upward. If we have a tiny nudge we only have to look at a small part of that cup. And that cup is going to look an awful lot like a parabola. If you don’t remember what a parabola is, think back to algebra class. Remember that curvey shape that was the only thing drawn on the board when you were dealing with the quadratic formula? That shape is a parabola.

Who cares about parabolas? We care because we know something good about them. In this context, anyway. The potential energy for a mass on a spring is also a parabola. And we know everything there is to know about masses on springs. Seriously. You’d think it was all physics was about from like 1678 through 1859. That’s because it’s something calculus lets us solve exactly. We don’t need books of complicated integrals or computers to do the work for us.

So here’s what we do. It’s something I did not get clearly when I was first introduced to these concepts. This left me badly confused and feeling lost in my first physics and differential equations courses. We are taking our original physics problem and building a new problem based on it. This new problem looks at how big our nudge away from the equilibrium is. How big the nudge is, how fast it grows, how it changes in time will follow rules. Those rules will look a lot like those for a mass on a spring. We started out with a radius that gives us a perfectly circular orbit. Now we get a secondary problem about how the difference between the nudged and the circular orbit changes in time.

That secondary problem has the same shape, the same equations, as a mass on a spring does. A mass on a spring is a central force problem. All the tools we had for studying central-force problems are still available. There is a new central-force problem, hidden within our original one. Here the “center” is the equilibrium we’re nudged around. It will let us answer a new set of questions.

## Why Stuff Can Orbit, Part 7: ALL the Circles

Previously:

Last time around I showed how to do a central-force problem for normal gravity. That’s one where a planet, or moon, or satellite, or whatever is drawn towards the center of space. It’s drawn by a potential energy that equals some constant times the inverse of the distance from the origin. That is, V(r) = C r-1. With a little bit of fussing around we could find out what distance from the center lets a circular orbit happen. And even Kepler’s Third Law, connecting how long an orbit takes to how big it must be.

There are two natural follow-up essays. One is to work out elliptical orbits. We know there are such things; all real planets and moons have them, and nearly all satellites do. The other is to work out circular orbits for another easy-to-understand example, like a mass on a spring. That’s something with a potential energy that looks like V(r) = C r2.

I want to do the elliptical orbits later on. The mass-on-a-spring I could do now. So could you, if you look follow last week’s essay and just change the numbers a little. But, you know, why bother working out one problem? Why not work out a lot of them? Why not work out every central-force problem, all at once?

Because we can’t. I mean, I can describe how to do that, but it isn’t going to save us much time. Like, the quadratic formula is great because it’ll give you the roots of a quadratic polynomial in one step. You don’t have to do anything but a little arithmetic. We can’t get a formula that easy if we try to solve for every possible potential energy.

But we can work out a lot of central-force potential energies all at once. That is, we can solve for a big set of similar problems, a “family” as we call them. The obvious family is potential energies that are powers of the planet’s distance from the center. That is, they’re potential energies that follow the rule

$V(r) = C r^n$

Here ‘C’ is some number. It might depend on the planet’s mass, or the sun’s mass. Doesn’t matter. All that’s important is that it not change over the course of the problem. So, ‘C’ for Constant. And ‘n’ is another constant number. Some numbers turn up a lot in useful problems. If ‘n’ is -1 then this can describe gravitational attraction. If ‘n’ is 2 then this can describe a mass on a spring. This ‘n’ can be any real number. That’s not an ideal choice of letter. ‘n’ usually designates a whole number. By using that letter I’m biasing people to think of numbers like ‘2’ at the expense of perfectly legitimate alternatives such as ‘2.1’. But now that I’ve made that explicit maybe we won’t make a casual mistake.

So what I want is to find where there are stable circular orbits for an arbitrary radius-to-a-power force. I don’t know what ‘C’ and ‘n’ are, but they’re some numbers. To find where a planet can have a circular orbit I need to suppose the planet has some mass, ‘m’. And that its orbit has some angular momentum, a number called ‘L’. From this we get the effective potential energy. That’s what the potential energy looks like when we remember that angular momentum has to be conserved.

$V_{eff}(r) = C r^n + \frac{L^2}{2m} r^{-2}$

To find where a circular orbit can be we have to take the first derivative of Veff with respect to ‘r’. The circular orbit can happen at a radius for which this first derivative equals zero. So we need to solve this:

$\frac{dV_{eff}}{dr} = n C r^{n-1} - 2\frac{L^2}{2m} r^{-3} = 0$

That derivative we know from the rules of how to take derivatives. And from this point on we have to do arithmetic. We want to get something which looks like ‘r = (some mathematics stuff here)’. Hopefully it’ll be something not too complicated. And hey, in the second term there, the one with L2 in it, we have a 2 in the numerator and a 2 in the denominator. So those cancel out and that’s simpler. That’s hopeful, isn’t it?

$n C r^{n-1} - \frac{L^2}{m}r^{-3} = 0$

OK. Add $\frac{L^2}{m}r^{-3}$ to both sides of the equation; we’re used to doing that. At least in high school algebra we are.

$n C r^{n-1} = \frac{L^2}{m}r^{-3}$

Not looking much better? Try multiplying both left and right sides by ‘r3‘. This gets rid of all the ‘r’ terms on the right-hand side of the equation.

$n C r^{n+2} = \frac{L^2}{m}$

Now we’re getting close to the ideal of ‘r = (some mathematics stuff)’. Divide both sides by the constant number ‘n times C’.

$r^{n+2} = \frac{L^2}{n C m}$

I know how much everybody likes taking (n+2)-nd roots of a quantity. I’m sure you occasionally just pick an object at random — your age, your telephone number, a potato, a wooden block — and find its (n+2)-nd root. I know. I’ll spoil some of the upcoming paragraphs to say that it’s going to be more useful knowing ‘rn + 2‘ than it is knowing ‘r’. But I’d like to have the radius of a circular orbit on the record. Here it is.

$r = \left(\frac{L^2}{n C m}\right)^{\frac{1}{n + 2}}$

Can we check that this is right? Well, we can at least check that things aren’t wrong. We can check against the example we already know. That’s the gravitational potential energy problem. For that one, ‘C’ is the number ‘G M m’. That’s the gravitational constant of the universe times the mass of the sun times the mass of the planet. And for gravitational potential energy, ‘n’ is equal to -1. This implies that, for a gravitational potential energy problem, we get a circular orbit when

$r_{grav} = \left(\frac{L^2}{n G M m^2}\right)^{\frac{1}{1}}$

I’m labelling it ‘rgrav‘ to point out it’s the radius of a circular orbit for gravitational problems. Might or might not need that in the future, but the label won’t hurt anything.

Go ahead and guess whether that agrees with last week’s work. I’m feeling confident.

OK, so, we know where a circular orbit might turn up for an arbitrary power function potential energy. Is it stable? We know from the third “Why Stuff Can Orbit” essay that it’s not a sure thing. We can have potential energies that don’t have any circular orbits. So it must be possible there are unstable orbits.

Whether our circular orbit is stable demands we do the same work we did last time. It will look a little harder to start, because there’s one more variable in it. What had been ‘-1’ last time is now an ‘n’, and stuff like ‘-2’ becomes ‘n-1’. Is that actually harder? Really?

So here’s the second derivative of the effective potential:

$\frac{d^2V_{eff}}{dr^2} = (n-1)nCr^{n - 2} + 3\frac{L^2}{m}r^{-4}$

My first impulse when I worked this out was to take the ‘r’ for a circular orbit, the thing worked out five paragraphs above, and plug it in to that expression. This is madness. Don’t do it. Or, you know, go ahead and start doing it and see how long it takes before you regret the errors of your ways.

The non-madness-inducing way to work out if this is a positive number? It involves noticing $r^{n-2}$ is the same number as $r^{n+2}\cdot r^{-4}$. So we have this bit of distribution-law magic:

$\frac{d^2V_{eff}}{dr^2} = (n-1)nCr^{n + 2}r^{-4} + 3\frac{L^2}{m}r^{-4}$

$\frac{d^2V_{eff}}{dr^2} = \left((n-1)nCr^{n + 2} + 3\frac{L^2}{m}\right) \cdot r^{-4}$

I’m sure we all agree that’s better, right? No, honestly, let me tell you why this is better. When will this expression be true?

$\left((n-1)nCr^{n + 2} + 3\frac{L^2}{m}\right) \cdot r^{-4} > 0$

That’s the product of two expressions. One of them is ‘r-4‘. ‘r’ is the radius of the planet’s orbit. That has to be a positive number. It’s how far the planet is from the origin. The number can’t be anything but positive. So we don’t have to worry about that.

SPOILER: I just palmed a card there. Did you see me palm a card there? Because I totally did. Watch for where that card turns up. It’ll be after this next bit.

So let’s look at the non-card-palmed part of this. We’re going to have a stable equilibrium when the other factor of that mess up above is positive. We need to know when this is true:

$(n-1)nCr^{n + 2} + 3\frac{L^2}{m} > 0$

OK. Well. We do know what ‘rn+2‘ is. Worked that out … uhm … twelve(?) paragraphs ago. I’ll say twelve and hope I don’t mess that up in editing. Anyway, what’s important is $r^{n+2} = \frac{L^2}{n C m}$. So we put that in where ‘rn+2‘ appeared in that above expression.

$(n-1)nC\frac{L^2}{n C m} + 3 \frac{L^2}{m} > 0$

This is going to simplify down some. Look at that first term, with an ‘n C’ in the numerator and again in the denominator. We’re going to be happier soon as we cancel those out.

$(n-1)\frac{L^2}{m} + 3\frac{L^2}{m} > 0$

And now we get to some fine distributive-law action, the kind everyone likes:

$\left( (n-1) + 3 \right)\frac{L^2}{m} > 0$

Well, we know $\frac{L^2}{m}$ has to be positive. The angular momentum ‘L’ might be positive or might be negative but its square is certainly positive. The mass ‘m’ has to be a positive number. So we’ll get a stable equilibrium whenever $(n - 1) + 3$ is greater than 0. That is, whenever $n > -2$. Done.

No we’re not done. That’s nonsense. We knew that going in. We saw that a couple essays ago. If your potential energy were something like, say, $V(r) = -2 r^3$ you wouldn’t have any orbits at all, never mind stable orbits. But 3 is certainly greater than -2. So what’s gone wrong here?

Let’s go back to that palmed card. Remember I mentioned how the radius of our circular orbit was a positive number. This has to be true, if there is a circular orbit. What if there isn’t one? Do we know there is a radius ‘r’ that the planet can orbit the origin? Here’s the formula giving us that circular orbit’s radius once again:

$r = \left(\frac{L^2}{n C m}\right)^{\frac{1}{n + 2}}$

Do we know that’s going to exist? … Well, sure. That’s going to be some meaningful number as long as we avoid obvious problems. Like, we can’t have the power ‘n’ be equal to zero, because dividing by zero is all sorts of bad. Also we can’t have the constant ‘C’ be zero, again because dividing by zero is bad.

Not a problem, though. If either ‘C’ or ‘n’ were zero, or if both were, then the original potential energy would be a constant number. V(r) would be equal to ‘C’ (if ‘n’ were zero), or ‘0’ (if ‘C’ were zero). It wouldn’t change with the radius ‘r’. This is a case called the ‘free particle’. There’s no force pushing the planet in one direction or another. So if the planet were not moving it would never start. If the planet were already moving, it would keep moving in the same direction in a straight line. No circular orbits.

Similarly if ‘n’ were equal to ‘-2’ there’d be problems because the power we raise that parenthetical expression to would be equal to one divided by zero, which is bad. Is there anything else that could be trouble there?

What if the thing inside parentheses is a negative number? I may not know what ‘n’ is. I don’t. We started off by supposing we didn’t know beyond that it was a number. But I do know that the n-th root of a negative number is going to be trouble. It might be negative. It might be complex-valued. But it won’t be a positive number. And we need a radius that’s a positive number. So that’s the palmed card. To have a circular orbit at all, positive or negative, we have to have:

$\frac{L^2}{n C m} > 0$

‘L’ is a regular old number, maybe positive, maybe negative. So ‘L2‘ is a positive number. And the mass ‘m’ is a positive number. We don’t know what ‘n’ and C’ are. But as long as their product is positive we’re good. The whole equation will be true. So ‘n’ and ‘C’ can both be negative numbers. We saw that with gravity: $V(r) = -\frac{GMm}{r}$. ‘G’ is the gravitational constant of the universe, a positive number. ‘M’ and ‘m’ are masses, also positive.

Or ‘n’ and ‘C’ can both be positive numbers. That turns up with spring problems: $V(r) = K r^2$, where ‘K’ is the ‘spring constant’. That’s some positive number again.

That time we found potential energies that didn’t have orbits? They were ones that had a positive ‘C’ and negative ‘n’, or a negative ‘C’ and positive ‘n’. The case we just worked out doesn’t have circular orbits. It’s nice to have that sorted out at least.

So what does it mean that we can’t have a stable orbit if ‘n’ is less than or equal to -2? Even if ‘C’ is negative? It turns out that if you have a negative ‘C’ and big negative ‘n’, like say -5, the potential energy drops way down to something infinitely large and negative at smaller and smaller radiuses. If you have a positive ‘C’, the potential energy goes way up at smaller and smaller radiuses. For large radiuses the potential drops to zero. But there’s never the little U-shaped hill in the middle, the way you get for gravity-like potentials or spring potentials or normal stuff like that. Yeah, who would have guessed?

What if we do have a stable orbit? How long does an orbit take? How does that relate to the radius of the orbit? We used this radius expression to work out Kepler’s Third Law for the gravity problem last week. We can do that again here.

Last week we worked out what the angular momentum ‘L’ had to be in terms of the radius of the orbit and the time it takes to complete one orbit. The radius of the orbit we called ‘r’. The time an orbit takes we call ‘T’. The formula for angular momentum doesn’t depend on what problem we’re doing. It just depends on the mass ‘m’ of what’s spinning around and how it’s spinning. So:

$L = 2\pi m \frac{r^2}{T}$

And from this we know what ‘L2‘ is.

$L^2 = 4\pi^2 m^2 \frac{r^4}{T^2}$

That’s convenient because we have an ‘L2‘ term in the formula for what the radius is. I’m going to stick with the formula we got for ‘rn+2‘ because that is so, so much easier to work with than ‘r’ by itself. So we go back to that starting point and then substitute what we know ‘L2‘ to be in there.

$r^{n + 2} = \frac{L^2}{n C m}$

This we rewrite as:

$r^{n + 2} = \frac{4 \pi^2 m^2}{n C m}\frac{r^4}{T^2}$

Some stuff starts cancelling out again. One ‘m’ in the numerator and one in the denominator. Small thing but it makes our lives a bit better. We can multiply the left side and the right side by T2. That’s more obviously an improvement. We can divide the left side and the right side by ‘rn + 2‘. And yes that is too an improvement. Watch all this:

$r^{n + 2} = \frac{4 \pi^2 m}{n C}\frac{r^4}{T^2}$

$T^2 \cdot r^{n + 2} = \frac{4 \pi^2 m}{n C}r^4$

$T^2 = \frac{4 \pi^2 m}{n C}r^{2 - n}$

And that last bit is the equivalent of Kepler’s Third Law for our arbitrary power-law style force.

Are we right? Hard to say offhand. We can check that we aren’t wrong, at least. We can check against the gravitational potential energy. For this ‘n’ is equal to -1. ‘C’ is equal to ‘-G M m’. Make those substitutions; what do we get?

$T^2 = \frac{4 \pi^2 m}{(-1) (-G M m)}r^{2 - (-1)}$

$T^2 = \frac{4 \pi^2}{G M}r^{3}$

Well, that is what we expected for this case. So the work looks good, this far. Comforting.

## Why Stuff Can Orbit, Part 6: Circles and Where To Find Them

Previously:

So now we can work out orbits. At least orbits for a central force problem. Those are ones where a particle — it’s easy to think of it as a planet — is pulled towards the center of the universe. How strong that pull is depends on some constants. But it only changes as the distance the planet is from the center changes.

What we’d like to know is whether there are circular orbits. By “we” I mean “mathematical physicists”. And I’m including you in that “we”. If you’re reading this far you’re at least interested in knowing how mathematical physicists think about stuff like this.

It’s easiest describing when these circular orbits exist if we start with the potential energy. That’s a function named ‘V’. We write it as ‘V(r)’ to show it’s an energy that changes as ‘r’ changes. By ‘r’ we mean the distance from the center of the universe. We’d use ‘d’ for that except we’re so used to thinking of distance from the center as ‘radius’. So ‘r’ seems more compelling. Sorry.

Besides the potential energy we need to know the angular momentum of the planet (or whatever it is) moving around the center. The amount of angular momentum is a number we call ‘L’. It might be positive, it might be negative. Also we need the planet’s mass, which we call ‘m’. The angular momentum and mass let us write a function called the effective potential energy, ‘Veff(r)’.

And we’ll need to take derivatives of ‘Veff(r)’. Fortunately that “How Differential Calculus Works” essay explains all the symbol-manipulation we need to get started. That part is calculus, but the easy part. We can just follow the rules already there. So here’s what we do:

• The planet (or whatever) can have a circular orbit around the center at any radius which makes the equation $\frac{dV_{eff}}{dr} = 0$ true.
• The circular orbit will be stable if the radius of its orbit makes the second derivative of the effective potential, $\frac{d^2V_{eff}}{dr^2}$, some number greater than zero.

We’re interested in stable orbits because usually unstable orbits are boring. They might exist but any little perturbation breaks them down. The mathematician, ordinarily, sees this as a useless solution except in how it describes different kinds of orbits. The physicist might point out that sometimes it can take a long time, possibly millions of years, before the perturbation becomes big enough to stand out. Indeed, it’s an open question whether our solar system is stable. While it seems to have gone millions of years without any planet changing its orbit very much we haven’t got the evidence to say it’s impossible that, say, Saturn will be kicked out of the solar system anytime soon. Or worse, that Earth might be. “Soon” here means geologically soon, like, in the next million years.

(If it takes so long for the instability to matter then the mathematician might allow that as “metastable”. There are a lot of interesting metastable systems. But right now, I don’t care.)

I realize now I didn’t explain the notation for the second derivative before. It looks funny because that’s just the best we can work out. In that fraction $\frac{d^2V_{eff}}{dr^2}$ the ‘d’ isn’t a number so we can’t cancel it out. And the superscript ‘2’ doesn’t mean squaring, at least not the way we square numbers. There’s a functional analysis essay in there somewhere. Again I’m sorry about this but there’s a lot of things mathematicians want to write out and sometimes we can’t find a way that avoids all confusion. Roll with it.

So that explains the whole thing clearly and easily and now nobody could be confused and yeah I know. If my Classical Mechanics professor left it at that we’d have open rebellion. Let’s do an example.

There are two and a half good examples. That is, they’re central force problems with answers we know. One is gravitation: we have a planet orbiting a star that’s at the origin. Another is springs: we have a mass that’s connected by a spring to the origin. And the half is electric: put a positive electric charge at the center and have a negative charge orbit that. The electric case is only half a problem because it’s the same as the gravitation problem except for what the constants involved are. Electric charges attract each other crazy way stronger than gravitational masses do. But that doesn’t change the work we do.

This is a lie. Electric charges accelerating, and just orbiting counts as accelerating, cause electromagnetic effects to happen. They give off light. That’s important, but it’s also complicated. I’m not going to deal with that.

I’m going to do the gravitation problem. After all, we know the answer! By Kepler’s something law, something something radius cubed something G M … something … squared … After all, we can look up the answer!

The potential energy for a planet orbiting a sun looks like this:

$V(r) = - G M m \frac{1}{r}$

Here ‘G’ is a constant, called the Gravitational Constant. It’s how strong gravity in the universe is. It’s not very strong. ‘M’ is the mass of the sun. ‘m’ is the mass of the planet. To make sense ‘M’ should be a lot bigger than ‘m’. ‘r’ is how far the planet is from the sun. And yes, that’s one-over-r, not one-over-r-squared. This is the potential energy of the planet being at a given distance from the sun. One-over-r-squared gives us how strong the force attracting the planet towards the sun is. Different thing. Related thing, but different thing. Just listing all these quantities one after the other means ‘multiply them together’, because mathematicians multiply things together a lot and get bored writing multiplication symbols all the time.

Now for the effective potential we need to toss in the angular momentum. That’s ‘L’. The effective potential energy will be:

$V_{eff}(r) = - G M m \frac{1}{r} + \frac{L^2}{2 m r^2}$

I’m going to rewrite this in a way that means the same thing, but that makes it easier to take derivatives. At least easier to me. You’re on your own. But here’s what looks easier to me:

$V_{eff}(r) = - G M m r^{-1} + \frac{L^2}{2 m} r^{-2}$

I like this because it makes every term here look like “some constant number times r to a power”. That’s easy to take the derivative of. Check back on that “How Differential Calculus Works” essay. The first derivative of this ‘Veff(r)’, taken with respect to ‘r’, looks like this:

$\frac{dV_{eff}}{dr} = -(-1) G M m r^{-2} -2\frac{L^2}{2m} r^{-3}$

We can tidy that up a little bit: -(-1) is another way of writing 1. The second term has two times something divided by 2. We don’t need to be that complicated. In fact, when I worked out my notes I went directly to this simpler form, because I wasn’t going to be thrown by that. I imagine I’ve got people reading along here who are watching these equations warily, if at all. They’re ready to bolt at the first sign of something terrible-looking. There’s nothing terrible-looking coming up. All we’re doing from this point on is really arithmetic. It’s multiplying or adding or otherwise moving around numbers to make the equation prettier. It happens we only know those numbers by cryptic names like ‘G’ or ‘L’ or ‘M’. You can go ahead and pretend they’re ‘4’ or ‘5’ or ‘7’ if you like. You know how to do the steps coming up.

So! We allegedly can have a circular orbit when this first derivative is equal to zero. What values of ‘r’ make true this equation?

$G M m r^{-2} - \frac{L^2}{m} r^{-3} = 0$

Not so helpful there. What we want is to have something like ‘r = (mathematics stuff here)’. We have to do some high school algebra moving-stuff-around to get that. So one thing we can do to get closer is add the quantity $\frac{L^2}{m} r^{-3}$ to both sides of this equation. This gets us:

$G M m r^{-2} = \frac{L^2}{m} r^{-3}$

Things are getting better. Now multiply both sides by the same number. Which number? r3. That’s because ‘r-3‘ times ‘r3‘ is going to equal 1, while ‘r-2‘ times ‘r3‘ will equal ‘r1‘, which normal people call ‘r’. I kid; normal people don’t think of such a thing at all, much less call it anything. But if they did, they’d call it ‘r’. We’ve got:

$G M m r = \frac{L^2}{m}$

And now we’re getting there! Divide both sides by whatever number ‘G M’ is, as long as it isn’t zero. And then we have our circular orbit! It’s at the radius

$r = \frac{L^2}{G M m^2}$

Very good. I’d even say pretty. It’s got all those capital letters and one little lowercase. Something squared in the numerator and the denominator. Aesthetically pleasant. Stinks a little that it doesn’t look like anything we remember from Kepler’s Laws once we’ve looked them up. We can fix that, though.

The key is the angular momentum ‘L’ there. I haven’t said anything about how that number relates to anything. It’s just been some constant of the universe. In a sense that’s fair enough. Angular momentum is conserved, exactly the same way energy is conserved, or the way linear momentum is conserved. Why not just let it be whatever number it happens to be?

(A note for people who skipped earlier essays: Angular momentum is not a number. It’s really a three-dimensional vector. But in a central force problem with just one planet moving around we aren’t doing any harm by pretending it’s just a number. We set it up so that the angular momentum is pointing directly out of, or directly into, the sheet of paper we pretend the planet’s orbiting in. Since we know the direction before we even start work, all we have to care about is the size. That’s the number I’m talking about.)

The angular momentum of a thing is its moment of inertia times its angular velocity. I’m glad to have cleared that up for you. The moment of inertia of a thing describes how easy it is to start it spinning, or stop it spinning, or change its spin. It’s a lot like inertia. What it is depends on the mass of the thing spinning, and how that mass is distributed, and what it’s spinning around. It’s the first part of physics that makes the student really have to know volume integrals.

We don’t have to know volume integrals. A single point mass spinning at a constant speed at a constant distance from the origin is the easy angular momentum to figure out. A mass ‘m’ at a fixed distance ‘r’ from the center of rotation moving at constant speed ‘v’ has an angular momentum of ‘m’ times ‘r’ times ‘v’.

So great; we’ve turned ‘L’ which we didn’t know into ‘m r v’, where we know ‘m’ and ‘r’ but don’t know ‘v’. We’re making progress, I promise. The planet’s tracing out a circle in some amount of time. It’s a circle with radius ‘r’. So it traces out a circle with perimeter ‘2 π r’. And it takes some amount of time to do that. Call that time ‘T’. So its speed will be the distance travelled divided by the time it takes to travel. That’s $\frac{2 \pi r}{T}$. Again we’ve changed one unknown number ‘L’ for another unknown number ‘T’. But at least ‘T’ is an easy familiar thing: it’s how long the orbit takes.

Let me show you how this helps. Start off with what ‘L’ is:

$L = m r v = m r \frac{2\pi r}{T} = 2\pi m \frac{r^2}{T}$

Now let’s put that into the equation I got eight paragraphs ago:

$r = \frac{L^2}{G M m^2}$

Remember that one? Now put what I just said ‘L’ was, in where ‘L’ shows up in that equation.

$r = \frac{\left(2\pi m \frac{r^2}{T}\right)^2}{G M m^2}$

I agree, this looks like a mess and possibly a disaster. It’s not so bad. Do some cleaning up on that numerator.

$r = \frac{4 \pi^2 m^2}{G M m^2} \frac{r^4}{T^2}$

That’s looking a lot better, isn’t it? We even have something we can divide out: the mass of the planet is just about to disappear. This sounds bizarre, but remember Kepler’s laws: the mass of the planet never figures into things. We may be on the right path yet.

$r = \frac{4 \pi^2}{G M} \frac{r^4}{T^2}$

OK. Now I’m going to multiply both sides by ‘T2‘ because that’ll get that out of the denominator. And I’ll divide both sides by ‘r’ so that I only have the radius of the circular orbit on one side of the equation. Here’s what we’ve got now:

$T^2 = \frac{4 \pi^2}{G M} r^3$

And hey! That looks really familiar. A circular orbit’s radius cubed is some multiple of the square of the orbit’s time. Yes. This looks right. At least it looks reasonable. Someone else can check if it’s right. I like the look of it.

So this is the process you’d use to start understanding orbits for your own arbitrary potential energy. You can find the equivalent of Kepler’s Third Law, the one connecting orbit times and orbit radiuses. And it isn’t really hard. You need to know enough calculus to differentiate one function, and then you need to be willing to do a pile of arithmetic on letters. It’s not actually hard. Next time I hope to talk about more and different … um …

I’d like to talk about the different … oh, dear. Yes. You’re going to ask about that, aren’t you?

Ugh. All right. I’ll do it.

How do we know this is a stable orbit? Well, it just is. If it weren’t the Earth wouldn’t have a Moon after all this. Heck, the Sun wouldn’t have an Earth. At least it wouldn’t have a Jupiter. If the solar system is unstable, Jupiter is probably the most stable part. But that isn’t convincing. I’ll do this right, though, and show what the second derivative tells us. It tells us this is too a stable orbit.

So. The thing we have to do is find the second derivative of the effective potential. This we do by taking the derivative of the first derivative. Then we have to evaluate this second derivative and see what value it has for the radius of our circular orbit. If that’s a positive number, then the orbit’s stable. If that’s a negative number, then the orbit’s not stable. This isn’t hard to do, but it isn’t going to look pretty.

First the pretty part, though. Here’s the first derivative of the effective potential:

$\frac{dV_{eff}}{dr} = G M m r^{-2} - \frac{L^2}{m} r^{-3}$

OK. So the derivative of this with respect to ‘r’ isn’t hard to evaluate again. This is again a function with a bunch of terms that are all a constant times r to a power. That’s the easiest sort of thing to differentiate that isn’t just something that never changes.

$\frac{d^2 V_{eff}}{dr^2} = -2 G M m r^{-3} - (-3)\frac{L^2}{m} r^{-4}$

Now the messy part. We need to work out what that line above is when our planet’s in our circular orbit. That circular orbit happens when $r = \frac{L^2}{G M m^2}$. So we have to substitute that mess in for ‘r’ wherever it appears in that above equation and you’re going to love this. Are you ready? It’s:

$-2 G M m \left(\frac{L^2}{G M m^2}\right)^{-3} + 3\frac{L^2}{m}\left(\frac{L^2}{G M m^2}\right)^{-4}$

This will get a bit easier promptly. That’s because something raised to a negative power is the same as its reciprocal raised to the positive of that power. So that terrible, terrible expression is the same as this terrible, terrible expression:

$-2 G M m \left(\frac{G M m^2}{L^2}\right)^3 + 3 \frac{L^2}{m}\left(\frac{G M m^2}{L^2}\right)^4$

Yes, yes, I know. Only thing to do is start hacking through all this because I promise it’s going to get better. Putting all those third- and fourth-powers into their parentheses turns this mess into:

$-2 G M m \frac{G^3 M^3 m^6}{L^6} + 3 \frac{L^2}{m} \frac{G^4 M^4 m^8}{L^8}$

Yes, my gut reaction when I see multiple things raised to the eighth power is to say I don’t want any part of this either. Hold on another line, though. Things are going to start cancelling out and getting shorter. Group all those things-to-powers together:

$-2 \frac{G^4 M^4 m^7}{L^6} + 3 \frac{G^4 M^4 m^7}{L^6}$

Oh. Well, now this is different. The second derivative of the effective potential, at this point, is the number

$\frac{G^4 M^4 m^7}{L^6}$

And I admit I don’t know what number that is. But here’s what I do know: ‘G’ is a positive number. ‘M’ is a positive number. ‘m’ is a positive number. ‘L’ might be positive or might be negative, but ‘L6‘ is a positive number either way. So this is a bunch of positive numbers multiplied and divided together.

So this second derivative what ever it is must be a positive number. And so this circular orbit is stable. Give the planet a little nudge and that’s all right. It’ll stay near its orbit. I’m sorry to put you through that but some people raised the, honestly, fair question.

So this is the process you’d use to start understanding orbits for your own arbitrary potential energy. You can find the equivalent of Kepler’s Third Law, the one connecting orbit times and orbit radiuses. And it isn’t really hard. You need to know enough calculus to differentiate one function, and then you need to be willing to do a pile of arithmetic on letters. It’s not actually hard. Next time I hope to talk about the other kinds of central forces that you might get. We only solved one problem here. We can solve way more than that.