Comic Strip Master Command decided this would be a light week, with about six comic strips worth discussing. I’ll go into four of them here, and in a day or two wrap up the remainder. There were several strips that didn’t quite rate discussion, and I’ll share those too. I never can be sure what strips will be best taped to someone’s office door.
But I got to another thought. We’re surprised to see lines in nature. We know what lines are, and understand properties of them pretty well. Even if we don’t specialize in geometry we can understand how we expect them to work. I don’t know how much of this is a cultural artifact: in the western mathematics tradition lines and polygons and circles are taught a lot, and from an early age. My impression is that enough different cultures have similar enough geometries, though. (Are there any societies that don’t seem aware of the Pythagorean Theorem?) So what is it that has got so many people making perfect lines and circles and triangles and squares out of crooked timbers?
Russell Myers’s Broom Hilda for the 13th is a lottery joke. Also, really, an accounting joke. Most of the players of a lottery will not win, of course. Nearly none of them will win more than they’ve paid into the lottery. If they didn’t, there would be an official inquiry. So, yes, nearly all people, even those who win money at the lottery, would have had more money if they skipped playing altogether.
Where it becomes an accounting question is how much did Broom Hilda expect to have when the week was through? If she planned to spend $20 on lottery tickets, and got exactly that? It seems snobbish to me to say that’s a dumber way to spend twenty bucks than, say, buying twenty bucks worth of magazines that you’ll throw away in a month would be. Or having dinner at a fast-casual place. Or anything else that you like doing even though it won’t leave you, in the long run, any better off. Has she come out ahead? That depends where she figures she should be.
Eric the Circle for the 13th, this one by Alabama_Al, is a plane- and solid-geometry joke. This gets it a bit more solidly on-topic than usual. But it’s still a strip focused on the connotations of mathematically-connected terms. There’s the metaphorical use of the ‘plane’ as in the thing people perceive as reality. There’s conflation between the idea of a ‘higher plane’ and ‘higher dimensions’. Also somewhere in here is the idea that ‘higher’ and ‘more’ dimensions of space are the same thing. ‘Transcendental’ here is used in the common English sense of surpassing something. ‘Transcendental’ has a mathematical definition too. That one relates to polynomials, because everything in mathematics is about polynomials. And, of course, one of the two numbers we know to be transcendental, and that people have any reason to care about, is π, which turns up all over circles.
Larry Wright’s Motley for the 13th of February, 2019. It originally ran in 1988, I believe on the same date. When I have written about Motley the results should appear at this link. In transcribing the strip for the alt-text here I was getting all ready to grumble that I didn’t know the kid’s name, and the strip is so old and minor that nobody has a cast list on it. Then I noticed, oh, yes, Mom says what the kid’s name is.
Larry Wright’s Motley for the 13th riffs on the form of a story problem. Joey’s mother does ask something that seems like a plausible addition problem. I’m a bit surprised he hadn’t counted all the day’s cookies already, but perhaps he doesn’t dwell on past snacks.
After that busy start last Sunday, Comic Strip Master Command left only a few things for the rest of the week. Here’s everything that seemed worthy of some comment to me:
Alex Hallatt’s Arctic Circle for the 12th is an arithmetic cameo. It’s used as the sort of thing that can be tested, with the straightforward joke about animal testing to follow. It’s not a surprise that machines should be able to do arithmetic. We’ve built machines for centuries to do arithmetic. Literally; Wilhelm Gottfried Leibniz designed and built a calculating machine able to add, subtract, multiply, and divide. This accomplishment from one of the founders of integral calculus is a potent reminder of how much we can accomplish if we’re supposed to be writing instead. (That link is to Robert Benchley’s classic essay “How To Get Things Done”. It is well worth reading, both because it is funny and because it’s actually good, useful advice.)
But it’s also true that animals do know arithmetic. At least a bit. Not — so far as we know — to the point they ponder square roots and such. But certainly to count, to understand addition and subtraction roughly, to have some instinct for calculations. Stanislas Dehaene’s The Number Sense: How the Mind Creates Mathematics is a fascinating book about this. I’m only wary about going deeper into the topic since I don’t know a second (and, better, third) pop book touching on how animals understand mathematics. I feel more comfortable with anything if I’ve encountered it from several different authors. Anyway it does imply the possibility of testing a polar bear’s abilities at arithmetic, only in the real world.
Berkeley Breathed’s Bloom County rerun for the 13th has another mathematics cameo. Geometry’s a subject worthy of stoking Binkley’s anxieties, though. It has a lot of definitions that have to be carefully observed. And while geometry reflects the understanding we have of things from moving around in space, it demands a precision that we don’t really have an instinct for. It’s a lot to worry about.
Terry Border’s Bent Objects for the 15th is our Venn Diagram joke for the week. I like this better than I think the joke deserves, probably because it is done in real materials. (Which is the Bent Objects schtick; it’s always photographs of objects arranged to make the joke.)
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 15th is a joke on knowing how far to travel but not what direction. Normal human conversations carry contextually reasonable suppositions. Told something is two miles away, it’s probably along the major road you’re on, or immediately nearby. I’d still ask for clarification told something was “two miles away”. Two blocks, I’d let slide, on the grounds that it’s no big deal to correct a mistake.
Still, mathematicians carry defaults with them too. They might be open to a weird, general case, certainly. But we have expectations. There’s usually some obvious preferred coordinate system, or directions. If it’s important that we be ready for alternatives we highlight that. We specify the coordinate system we want. Perhaps we specify we’re taking that choice “without loss of generality”, that is, without supposing some other choice would be wrong.
I noticed the mathematician’s customized plate too. “EIPI1” is surely a reference to the expression . That sum, it turns out, equals zero. It reflects this curious connection between exponentiation, complex-valued numbers, and the trigonometric functions. It’s a weird thing to know is true, and it’s highly regarded in certain nerd circles for that weirdness.
Hilary Price’s Rhymes With Orange for the 16th features a what-are-the-odds sort of joke, this one about being struck by a bolt from the sky. Lightning’s the iconic bolt to strike someone, and be surprising about it. Fabric would be no less surprising, though. And there’s no end of stories of weird things falling from the skies. It’s easier to get stuff into the sky than you might think, and there are only a few options once that’s happened.
Through the end of December my Fall 2018 Mathematics A To Z continues. I’m still open for topics to discuss from the last half-dozen letters of the alphabet. Even if someone’s already given a word for some letter, suggest something anyway. You might inspire me in good ways.
February’s been a flooding month. Literally (we’re about two blocks away from the Voluntary Evacuation Zone after the rains earlier this week) and figuratively, in Comic Strip Master Command’s suggestions about what I might write. I have started thinking about making a little list of the comics that just say mathematics in some capacity but don’t give me much to talk about. (For example, Bob the Squirrel having a sequence, as it does this week, with a geometry tutor.) But I also know, this is unusually busy this month. The problem will recede without my having to fix anything. One of life’s secrets is learning how to tell when a problem’s that kind.
Ham’s Life on Earth for the 12th has a science-y type giving a formula as “something you should know”. The formula’s gibberish, so don’t worry about it. I got a vibe of it intending to be some formula from statistics, but there’s no good reason for that. I’ve had some statistical distribution problems on my mind lately.
Eric Teitelbaum and Bill Teitelbaum’s Bottomliners for the 12th maybe influenced my thinking. It has a person claiming to be a former statistician, and his estimate of how changing his job’s affected his happiness. Could really be any job that encourages people to measure and quantify things. But “statistician” is a job with strong connotations of being able to quantify happiness. To have that quantity feature a decimal point, too, makes him sound more mathematical and thus, more surely correct. I’d be surprised if “two and a half times” weren’t a more justifiable estimate, given the margin for error on happiness-measurement I have to imagine would be there. (This seems to be the first time I’ve featured Bottomliners at least since I started tagging the comic strips named. Neat.)
Ruben Bolling’s Super-Fun-Pak Comix for the 12th reprinted a panel called The Uncertainty Principal that baffled commenters there. It’s a pun on “Uncertainty Principle”, the surprising quantum mechanics result that there are some kinds of measurements that can’t be taken together with perfect precision. To know precisely where something is destroys one’s ability to measure its momentum. To know the angular momentum along one axis destroys one’s ability to measure it along another. This is a physics result (note that the panel’s signed “Heisenberg”, for the name famously attached to the Uncertainty Principle). But the effect has a mathematical side. The operations that describe finding these incompatible pairs of things are noncommutative; it depends what order you do them in.
We’re familiar enough with noncommutative operations in the real world: to cut a piece of paper and then fold it usually gives something different to folding a piece of paper and then cutting it. To pour batter in a bowl and then put it in the oven has a different outcome than putting batter in the oven and then trying to pour it into the bowl. Nice ordinary familiar mathematics that people learn, like addition and multiplication, do commute. These come with partners that don’t commute, subtraction and division. But I get the sense we don’t think of subtraction and division like that. It’s plain enough that ‘a’ divided by ‘b’ and ‘b’ divided by ‘a’ are such different things that we don’t consider what’s neat about that.
In the ordinary world the Uncertainty Principle’s almost impossible to detect; I’m not sure there’s any macroscopic phenomena that show it off. I mean, that atoms don’t collapse into electrically neutral points within nanoseconds, sure, but that isn’t as compelling as, like, something with a sodium lamp and a diffraction grating and an interference pattern on the wall. The limits of describing certain pairs of properties is about how precisely both quantities can be known, together. For everyday purposes there’s enough uncertainty about, say, the principal’s weight (and thus momentum) that uncertainty in his position won’t be noticeable. There’s reasons it took so long for anyone to suspect this thing existed.
Mike Baldwin’s Cornered for the 14th is a blackboard-full-of-symbols panel. Well, a whiteboard. It’s another in the line of mathematical proofs of love.
Dana Simpson’s Ozy and Millie rerun for the 14th has the title characters playing “logical fallacy tag”. Ozy is, as Millie says, making an induction argument. In a proper induction argument, you characterize something with some measure of size. Often this is literally a number. You then show that if it’s true that the thing is true for smaller problems than you’re interested in, then it has to also be true for the problem you are interested in. Add to that a proof that it’s true for some small enough problem and you’re done. In this case, Ozy’s specific fallacy is an appeal to probability: all but one of the people playing tag are not it, and therefore, any particular person playing the game isn’t it. That it’s fallacious really stands out when there’s only two people playing.
Alex Hallatt’s Arctic Circle for the 16th riffs on the mathematics abilities of birds. Pigeons, in this case. The strip starts from their abilities understanding space and time (which are amazing) and proposes pigeons have some insight into the Grand Unified Theory. Animals have got astounding mathematical abilities, should point out. Don’t underestimate them. (This also seems to be the first time I’ve tagged Arctic Circle which doesn’t seem like it could be right. But I didn’t remember naming the penguins before so maybe I haven’t? Huh. Mind, I only started tagging the comic strip titles a couple months ago.)
Tony Cochrane’s Agnes for the 17th has the title character try bluffing her way out of mathematics homework. Could there be a fundamental flaw in mathematics as we know it? Possibly. It’s hard to prove that any field complicated enough to be interesting is also self-consistent. And there’s a lot of mathematics out there. And mathematics subjects often develop with an explosion of new ideas and then a later generation that cleans them up and fills in logical gaps. Symplectic geometry is, if I’m following the news right, going into one of those cleaning-up phases now. Is it likely to be uncovered by a girl in elementary school? I’m skeptical, and also skeptical that she’d have a replacement system that would be any better. I admire Agnes’s ambition, though.
Mike Baldwin’s Cornered for the 17th plays on the reputation for quantum mechanics as a bunch of mathematically weird, counter-intuitive results. In fairness to the TV program, I’ve had series run longer than I originally planned too.