John Hambrock’s The Brilliant Mind of Edison Lee for the 1st of October is a calendar joke. Well, many of the months used to have names that denoted their count. Month names have changed more than you’d think. For a while there every Roman Emperor was renaming months after himself. Most of these name changes did not stick. Lucius Aurelius Commodus, who reined from 177 to 192, gave all twelve months one or another of his names.

I didn’t cover quite all of last week’s mathematics comics with Sunday’s essay. There were a handful that all ran on Saturday. And, as has become tradition, I’ll also list a couple that didn’t rate a couple paragraphs.

Rick Kirkman and Jerry Scott’s Baby Blues for the 23rd has a neat variation on story problems. Zoe’s given the assignment to make her own. I don’t remember getting this as homework, in elementary school, but it’s hard to see why I wouldn’t. It’s a great exercise: not just set up an arithmetic problem to solve, but a reason one would want to solve it.

Composing problems is a challenge. It’s a skill, and you might be surprised that when I was in grad school we didn’t get much training in it. We were just taken to be naturally aware of how to identify a skill one wanted to test, and to design a question that would mostly test that skill, and to write it out in a question that challenged students to identify what they were to do and how to do it, and why they might want to do it. But as a grad student I wasn’t being prepared to teach elementary school students, just undergraduates.

Mastroianni and Hart’s B.C. for the 23rd is a joke in the funny-definition category, this for “chaos theory”. Chaos theory formed as a mathematical field in the 60s and 70s, and it got popular alongside the fractal boom in the 80s. The field can be traced back to the 1890s, though, which is astounding. There was no way in the 1890s to do the millions of calculations needed to visualize any good chaos-theory problem. They had to develop results entirely by thinking.

Wiley’s definition is fine enough about certain systems being unpredictable. Wiley calls them “advanced”, although they don’t need to be that advanced. A compound pendulum — a solid rod that swings on the end of another swinging rod — can be chaotic. You can call that “advanced” if you want but then people are going to ask if you’ve had your mind blown by this post-singularity invention, the “screw”.

What makes for chaos is not randomness. Anyone knows the random is unpredictable in detail. That’s no insight. What’s exciting is when something’s unpredictable but deterministic. Here it’s useful to think of continental divides. These are the imaginary curves which mark the difference in where water runs. Pour a cup of water on one side of the line, and if it doesn’t evaporate, it eventually flows to the Pacific Ocean. Pour the cup of water on the other side, it eventually flows to the Atlantic Ocean. These divides are often wriggly things. Water may mostly flow downhill, but it has to go around a lot of hills.

So pour the water on that line. Where does it go? There’s no unpredictability in it. The water on one side of the line goes to one ocean, the water on the other side, to the other ocean. But where is the boundary? And that can be so wriggly, so crumpled up on itself, so twisted, that there’s no meaningfully saying. There’s just this zone where the Pacific Basin and the Atlantic Basin merge into one another. Any drop of water, however tiny, dropped in this zone lands on both sides. And that is chaos.

Neatly for my purposes there’s even a mountain at a great example of this boundary. Triple Divide Peak, in Montana, rests on the divides between the Atlantic and the Pacific basins, and also on the divide between the Atlantic and the Arctic oceans. (If one interprets the Hudson Bay as connecting to the Arctic rather than the Atlantic Ocean, anyway. If one takes Hudson Bay to be on the Atlantic Ocean, then Snow Dome, Alberta/British Columbia, is the triple point.) There’s a spot on this mountain (or the other one) where a spilled cup of water could go to any of three oceans.

John Graziano’s Ripley’s Believe It Or Not for the 23rd mentions one of those beloved bits of mathematics trivia, the birthday problem. That’s finding the probability that no two people in a group of some particular size will share a birthday. Or, equivalently, the probability that at least two people share some birthday. That’s not a specific day, mind you, just that some two people share a birthday. The version that usually draws attention is the relatively low number of people needed to get a 50% chance there’s some birthday pair. I haven’t seen the probability of 70 people having at least one birthday pair before. 99.9 percent seems plausible enough.

The birthday problem usually gets calculated something like this: Grant that one person has a birthday. That’s one day out of either 365 or 366, depending on whether we consider leap days. Consider a second person. There are 364 out of 365 chances that this person’s birthday is not the same as the first person’s. (Or 365 out of 366 chances. Doesn’t make a real difference.) Consider a third person. There are 363 out of 365 chances that this person’s birthday is going to be neither the first nor the second person’s. So the chance that all three have different birthdays is . Consider the fourth person. That person has 362 out of 365 chances to have a birthday none of the first three have claimed. So the chance that all four have different birthdays is . And so on. The chance that at least two people share a birthday is 1 minus the chance that no two people share a birthday.

As always happens there are some things being assumed here. Whether these probability calculations are right depends on those assumptions. The first assumption being made is independence: that no one person’s birthday affects when another person’s is likely to be. Obvious, you say? What if we have twins in the room? What if we’re talking about the birthday problem at a convention of twins and triplets? Or people who enjoyed the minor renown of being their city’s First Babies of the Year? (If you ever don’t like the result of a probability question, ask about the independence of events. Mathematicians like to assume independence, because it makes a lot of work easier. But assuming isn’t the same thing as having it.)

The second assumption is that birthdates are uniformly distributed. That is, that a person picked from a room is no more likely to be born the 13th of February than they are the 24th of September. And that is not quite so. September births are (in the United States) slightly more likely than other months, for example, which suggests certain activities going on around New Year’s. Across all months (again in the United States) birthdates of the 13th are slightly less likely than other days of the month. I imagine this has to be accounted for by people who are able to select a due date by inducing delivery. (Again if you need to attack a probability question you don’t like, ask about the uniformity of whatever random thing is in place. Mathematicians like to assume uniform randomness, because it akes a lot of work easier. But assuming it isn’t the same as proving it.)

Do these differences mess up the birthday problem results? Probably not that much. We are talking about slight variations from uniform distribution. But I’ll be watching Ripley’s to see if it says anything about births being more common in September, or less common on 13ths.

And now the comics I didn’t find worth discussing. They’re all reruns, it happens. Morrie Turner’s Wee Pals rerun for the 20th just mentions mathematics class. That could be any class that has tests coming up, though. Percy Crosby’s Skippy for the 21st is not quite the anthropomorphic numerals jokes for the week. It’s getting around that territory, though, as Skippy claims to have the manifestation of a zero. Bill Rechin’s Crock for the 22nd is a “pick any number” joke. I discussed as much as I could think of about this when it last appeared, in May of 2018. Also I’m surprised that Crock is rerunning strips that quickly now. It has, in principle, decades of strips to draw from.

If there is a theme to the last comic strips from the previous week, it’s that kids find arithmetic hard. That’s a title for you.

Bill Watterson’s Calvin and Hobbes for the 2nd is one of the classics, of course. Calvin’s made the mistake of supposing that mathematics is only about getting true answers. We’ll accept the merely true, if that’s what we can get. But we want interesting. Which is stuff that’s not just true but is unexpected or unforeseeable in some way. We see this when we talk about finding a “proper” answer, or subset, or divisor, or whatever. Some things are true for every question, and so, who cares?

Also, is it really true that Calvin doesn’t know any of his homework problems? It’s possible, but did he check?

Were I grading, I would accept an “I don’t know”, at least for partial credit, in certain conditions. Those involve the student writing out what they would like to do to try to solve the problem. If the student has a fair idea of something that ought to find a correct answer, then the student’s showing some mathematical understanding. But there are times that what’s being tested is proficiency at an operation, and a blank “I don’t know” would not help much with that.

Patrick Roberts’s Todd the Dinosaur for the 2nd has an arithmetic cameo. Fractions, particularly. They’re mentioned as something too dull to stay awake through. So for the joke’s purpose this could have been any subject that has an exposition-heavy segment. Fractions do have more complicated rules than adding whole numbers do. And introducing those rules can be hard. But anything where you introduce rules instead of showing what you can do with them is hard. I’m thinking here of several times people have tried to teach me board games by listing all the rules, instead of setting things up and letting me ask “what am I allowed to do now?” the first couple turns. I’m not sure how that would translate to fractions, but there might be something.

John Zakour and Scott Roberts’s Maria’s Day for the 2nd has another of Maria’s struggles with arithmetic. It’s presented as a challenge so fierce it can defeat even superheroes. Could be any subject, really. It’s hard to beat the visual economy of having it be a division problem, though.

Rick Kirkman and Jerry Scott’s Baby Blues for the 3rd shows a bit of youthful enthusiasm. Hammie’s parents would rather that enthusiasm be put to memorizing multiplication facts. I’m not sure this would match the fun of building stuff. But I remember finding patterns inside the multiplication table fascinating. Like how you could start from a perfect square and get the same sequence of numbers as you moved out along a diagonal. Or tracing out where the same number appeared in different rows and columns, like how just everything could multiply into 24. Might be worth playing with some.

And now the other half of last week’s comic strips. It was unusually rich in comics that come from Comics Kingdom or Creators.com, which have limited windows of access and therefore make me feel confident I should include the strips so my comments make any sense.

Rick Kirkman and Jerry Scott’s Baby Blues for the 9th mentions mathematics homework as a resolutely rage-inducing topic. It’s mathematics homework, obviously, or else it wouldn’t be mentioned around here. And even more specifically it’s Common Core mathematics homework. So it always is with attempts to teach subjects better. Especially mathematics, given how little confidence people have in their own mastery. I can’t blame parents for supposing any change to be just malice.

Bill Amend’s FoxTrot Classics for the 9th is about random numbers. As Jason says, it is hard to generate random numbers. Random numbers are a resource. Having a good source of them makes a lot of computation work. But they’re hard to make. It seems to be a contradiction to create random numbers by an algorithm. There’s reasons we accept pseudorandom numbers, or find quasirandom numbers. This strip originally ran the 16th of November, 2006.

Chris Browne’s Hagar the Horrible for the 10th is about the numerous. There’s different kinds of limits. There’s the greatest number of things we can count in an instant. There’s a limit to how long a string of digits or symbols we can remember. There’s the biggest number of things we can visualize. And “visualize” is a slippery concept. I think I have a pretty good idea what we mean when we say “a thousand” of something. I could calculate how long it took me to do something a thousand times, or to write a thousand of something. I know that it was at about a thousand words that, last A To Z sequence, I got to feeling I should wrap up any particular essay. But did I see any particular difference between word 999 and word 1,000? No; what I really knew was “about enough paragraphs” and maybe “fills just over two screens in my text editor”. So do I know what a thousand is? Anyway, we all have our limits, acknowledge them or not.

Henry Scarpelli and Craig Boldman’s Archie rerun for the 17th is about Moose’s struggle with mathematics. Just writing “more or less” doesn’t fix an erroneous answer, true. But error margins, and estimates of where an answer should be, can be good mathematics. (Part of the Common Core that many parents struggle with is making the estimate of an answer the first step, and a refined answer later. Based on what I see crossing social media, this really offends former engineering majors who miss the value in having an expected approximate answer.) It’s part of how we define limits, and derivatives, and integrals, and all of calculus. But it’s in a more precise way than Moose tries to do.

It wasn’t like the week wasn’t busy. Comic Strip Master Command sent out as many mathematically-themed comics as I might be able to use. But they were again ones that don’t leave me much to talk about. I’ll try anyway. It was looking like an anthropomorphic-symboles sort of week, too.

Dan Thompson’s Brevity for the 31st is another entry in the anthropomorphic-symbols joke contest. This one sticks to mathematical symbols, so if the Frank and Ernest makes the cut this week so must this one.

Eric the Circle for the 31st, this installment by “T daug”, gives the slightly anthropomorphic geometric figure a joke that at least mentions a radius, and isn’t that enough? What catches my imagination about this panel particularly is that the “fractured radius” is not just a legitimate pun but also resembles a legitimate geometry drawing. Drawing a diameter line is sensible enough. Drawing some other point on the circle and connecting that to the ends of the diameter is also something we might do.

Scott Hilburn’s The Argyle Sweater for the 1st of August is one of the logical mathematics jokes you could make about snakes. The more canonical one runs like this: God in the Garden of Eden makes all the animals and bids them to be fruitful. And God inspects them all and finds rabbits and doves and oxen and fish and fowl all growing in number. All but a pair of snakes. God asks why they haven’t bred and they say they can’t, not without help. What help? They need some thick tree branches chopped down. The bemused God grants them this. God checks back in some time later and finds an abundance of baby snakes in the Garden. But why the delay? “We’re adders,” explain the snakes, “so we need logs to multiply”. This joke absolutely killed them in the mathematics library up to about 1978. I’m told.

John Deering’s Strange Brew for the 1st is a monkeys-at-typewriters joke. It faintly reminds me that I might have pledged to retire mentions of the monkeys-at-typewriters joke. But I don’t remember so I’ll just have to depend on saying I don’t think I retired the monkeys-at-typewriters jokes and trust that someone will tell me if I’m wrong.

Dana Simpson’s Ozy and Millie rerun for the 2nd name-drops multiplication tables as the sort of thing a nerd child wants to know. They may have fit the available word balloon space better than “know how to diagram sentences” would.

Mark Anderson’s Andertoons for the 3rd is the reassuringly normal appearance of Andertoons for this week. It is a geometry class joke about rays, line segments with one point where there’s an end and … a direction where it just doesn’t. And it riffs on the notion of the existence of mathematical things. At least I can see it that way.

Stephen Bentley’s Herb and Jamaal for the 5th tosses off a mention of the New Math as something well out of fashion. There are fashions in mathematics, as in all human endeavors. It startles many to learn this.

It’s been a busy enough week at Comic Strip Master Command that I’ll need to split the results across two essays. Any other week I’d be glad for this, since, hey, free content. But this week it hits a busy time and shouldn’t I have expected that? The odd thing is that the mathematics mentions have been numerous but not exactly deep. So let’s watch as I make something big out of that.

Mark Tatulli’s Heart of the City closed out its “Math Camp” storyline this week. It didn’t end up having much to do with mathematics and was instead about trust and personal responsibility issues. You know, like stories about kids who aren’t learning to believe in themselves and follow their dreams usually are. Since we never saw any real Math Camp activities we don’t get any idea what they were trying to do to interest kids in mathematics, which is a bit of a shame. My guess would be they’d play a lot of the logic-driven puzzles that are fun but that they never get to do in class. The story established that what I thought was an amusement park was instead a fair, so, that might be anywhere Pennsylvania or a couple of other nearby states.

Rick Kirkman and Jerry Scott’s Baby Blues for the 25th sees Hammie have “another” mathematics worksheet accident. Could be any subject, really, but I suppose it would naturally be the one that hey wait a minute, why is he doing mathematics worksheets in late July? How early does their school district come back from summer vacation, anyway?

Olivia Walch’s Imogen Quest for the 26th uses a spot of mathematics as the emblem for teaching. In this case it’s a bit of physics. And an important bit of physics, too: it’s the time-dependent Schrödinger Equation. This is the one that describes how, if you know the total energy of the system, and the rules that set its potential and kinetic energies, you can work out the function Ψ that describes it. Ψ is a function, and it’s a powerful one. It contains probability distributions: how likely whatever it is you’re modeling is to have a particle in this region, or in that region. How likely it is to have a particle with this much momentum, versus that much momentum. And so on. Each of these we find by applying a function to the function Ψ. It’s heady stuff, and amazing stuff to me. Ψ somehow contains everything we’d like to know. And different functions work like filters that make clear one aspect of that.

Dan Thompson’s Brevity for the 26th is a joke about Sesame Street‘s Count von Count. Also about how we can take people’s natural aptitudes and delights and turn them into sad, droning unpleasantness in the service of corporate overlords. It’s fun.

Doug Savage’s Savage Chickens for the 26th proves something “scientific” by putting numbers into it. Particularly, by putting statistics into it. Understandable impulse. One of the great trends of the past century has been taking the idea that we only understand things when they are measured. And this implies statistics. Everything is unique. Only statistical measurement lets us understand what groups of similar things are like. Does something work better than the alternative? We have to run tests, and see how the something and the alternative work. Are they so similar that the differences between them could plausibly be chance alone? Are they so different that it strains belief that they’re equally effective? It’s one of science’s tools. It’s not everything which makes for science. But it is stuff easy to communicate in one panel.

Neil Kohney’s The Other End for the 26th is really a finance joke. It’s about the ways the finance industry can turn one thing into a dazzling series of trades and derivative trades. But this is a field that mathematics colonized, or that colonized mathematics, over the past generation. Mathematical finance has done a lot to shape ideas of how we might study risk, and probability, and how we might form strategies to use that risk. It’s also done a lot to shape finance. Pretty much any major financial crisis you’ve encountered since about 1990 has been driven by a brilliant new mathematical concept meant to govern risk crashing up against the fact that humans don’t behave the way some model said they should. Nor could they; models are simplified, abstracted concepts that let hard problems be approximated. Every model has its points of failure. Hopefully we’ll learn enough about them that major financial crises can become as rare as, for example, major bridge collapses or major airplane disasters.