Reading the Comics, January 1, 2019: New Year’s Day Edition


It’s a new year. That doesn’t mean I’m not going to keep up some of my old habits. One of them is reading the comics for the mathematics bits. For example …

Johnny Hart’s Back To BC for the 30th presents some curious use of mathematics. At least the grammar of mathematics. It’s a bunch of statements that are supposed to, taken together, overload … I’m going to say BC’s … brain. (I’m shaky on which of the characters is Peter and which is BC. Their difference in hair isn’t much of a visual hook.) Certainly mathematics inspires that feeling that one’s overloaded one’s brain. The long strings of reasoning and (ideally) precise definitions are hard to consider. And the proofs mathematicians find the most fun are, often, built cleverly. That is, going about their business demonstrating things that don’t seem relevant, and at the end tying them together. It’s hard to think.

Peter: 'The sum of the four sides of an isosceles triangle is equal to the ... ' BC, thinking: 'Four?' Peter: 'Hypotenuse of a rectangular circle ... ' BC, thinking: 'A rectangular circle?' Peter: 'Having a mean radius of x divided by alpha centura ... ' BC, thinking: 'Having.' SNAP! (He rubs his head.) BC: 'I think that must have been my mind.'
Johnny Hart’s Back To BC for the 30th of December, 2018. The strip says it’s from the 18th of February, 1962. Essays inspired by B.C., both 1962 vintage and 2019 current, should be at this link.

But then … Peter … isn’t giving a real mathematical argument. He’s giving nonsense. And obvious nonsense, rather than nonsense because the writer wanted something that sounded complicated without caring what was said. Talking about a “four-sided triangle” or a “rectangular circle” has to be Peter trying to mess with BC’s head. Confidently-spoken nonsense can sound as if it’s deeper wisdom than the listener has. Which, fair enough: how can you tell whether an argument is nonsense or just cleverer than you are? Consider the kind of mathematics proof I mentioned above, where the structure might almost be a shaggy dog joke. If you can’t follow the logic, is it because the argument is wrong or because you haven’t worked out why it is right?

I believe that … Peter … is just giving nonsense and trusting that … BC … won’t know the difference, but will wear himself out trying to understand. Pranks.

Doctor: 'I'm not an accountant. I'm your doctor. However, by trying to do your taxes by yourself, I've calculated your brain has depreciated by nearly 68%.'
Tim Lachowski’s Get A Life for the 31st of December, 2018. Essays discussing things raised by Get A Life should be at this link.

Tim Lachowski’s Get A Life for the 31st just has some talk about percentages and depreciation and such. It’s meant to be funny that we might think of a brain depreciating, as if anatomy could use the same language as finance. Still, one of the virtues of statistics is the ability to understand a complicated reality with some manageable set of numbers. If we accept the convention that some number can represent the value of a business, why not the convention that some number could represent the health of a brain? So, it’s silly, but I can imagine a non-silly framing for it.

Trout: 'Two thousand and nineteen years, that's a long time.' Agnes: 'Yep! Earth has been around a while!' Trout: 'Were people even alive back then?' Agnes: 'Someone had to start counting, so I guess so, yeah.' Trout: 'Who taught them to count?' Agnes: 'Probably the people selling calendars.'
Tony Cochran’s Agnes for the 1st of January, 2019. This and other essays discussing Agnes should be at this link.

Tony Cochran’s Agnes for the 1st is about calendars. The history of calendars is tied up with mathematics in deep and sometimes peculiar ways. One might imagine that a simple ever-increasing index from some convenient reference starting time would do. And somehow that doesn’t. Also, the deeper you go into calendars the more you wonder if anyone involved in the project knew how to count. If you ever need to feel your head snapping, try following closely just how the ancient Roman calendar worked. Especially from the era when they would occasionally just drop an extra month in to the late-middle of February.

The Julian and Gregorian calendars have a year number that got assigned proleptically, that is, with the year 1 given to a set of dates that nobody present at the time called the year 1. Which seems fair enough; not many people in the year 1 had any idea that something noteworthy was under way. Calendar epochs dated to more clear events, like the reign of a new emperor or the revolution that took care of that whole emperor problem, will more reliably start with people aware of the new numbers. Proleptic dating has some neat side effects, though. If you ever need to not impress someone, you can point out that the dates from the 1st of March, 200 to the 28th of February, 300 both the Julian and the Gregorian calendar dates exactly matched.

Dad: 'OK, Suzie, you hate math. And actually, 1/37 of me understands exactly how you feel.' Suzie: 'Lay off, Dad.'
Niklas Eriksson’s Carpe Diem for the 2nd of January, 2019. And appearances by Carpe Diem in my essays should be at this link.

Niklas Eriksson’s Carpe Diem for the 2nd is a dad joke about mathematics. And uses fractions as emblematic of mathematics, fairly enough. Introducing them and working with them are the sorts of thing that frustrate and confuse. I notice also the appearance of “37” here. Christopher Miller’s fascinating American Cornball: A Laffopedic Guide to the Formerly Funny identifies 37 as the current “funniest number”, displacing the early 20th century’s preferred 23 (as in skidoo). Among other things, odd numbers have a connotation of seeming more random than even numbers; ask someone to pick a whole number from 1 to 50 and you’ll see 37’s and 33’s more than you’ll see, oh, 48’s. Why? Good question. It’s among the mysteries of psychology. There’s likely no really deep reason. Maybe a sense that odd numbers are, well, odd as in peculiar, and that a bunch of peculiarities will be funny. Now let’s watch the next decade make a food of me and decide the funniest number is 64.


I’m glad to be back on schedule publishing Reading the Comics posts. I should have another one this week. It’ll be at this link when it’s ready. Thanks for reading.

Advertisements

Reading the Comics, January 6, 2018: Terms Edition


The last couple days of last week saw a rush of comics, although most of them were simpler things to describe. Bits of play on words, if you like.

Samson’s Dark Side of the Horse for the 4th of January, 2018, is one that plays on various meanings of “average”. The mean, alluded to in the first panel, is the average most people think of first. Where you have a bunch of values representing instances of something, add up the values, and divide by the number of instances. (Properly that’s the arithmetic mean. There’s some others, such as the geometric mean, but if someone’s going to use one of those they give you clear warning.) The median, in the second, is the midpoint, the number that half of all instances are less than. So you see the joke. If the distribution of intelligence is normal — which is a technical term, although it does mean “not freakish” — then the median and the mean should be equal. If you had infinitely many instances, and they were normally distributed, the two would be equal. With finitely many instances, the mean and the median won’t be exactly in line, for the same reason if you fairly toss a coin two million times it won’t turn up heads exactly one million times.

Dark Side of the Horse for the 5th delivers the Roman numerals joke of the year. And I did have to think about whether ‘D’ is a legitimate Roman numeral. This would be easier to remember before 1900.

Mike Lester’s Mike du Jour for the 4th is geometry wordplay. I’m not sure the joke stands up to scrutiny, but it lands well enough initially.

Johnny Hart’s Back to BC for the 5th goes to the desire to quantify and count things. And to double-check what other people tell you about this counting. It’s easy, today, to think of the desire to quantify things as natural to humans. I’m not confident that it is. The history of statistics shows this gradual increase in the number and variety of things getting tracked. This strip originally ran the 11th of July, 1960.

Bill Watterson’s Calvin and Hobbes for the 5th talks about averages again. And what a population average means for individuals. It doesn’t mean much. The glory of statistics is that groups are predictable in a way that individuals are not.

John Graziano’s Ripley’s Believe It Or Not for the 5th features a little arithmetic coincidence, that multiplying 21,978 by four reverses its digits. It made me think of Ray Kassinger’s question the other day about parasitic numbers. But this isn’t a parasitic number. A parasitic number is one with a value, multiplied by a particular number, that’s the same as you get by moving its last digit to the front. Flipping the order of digits seems like it should be something and I don’t know what.

Mark Anderson’s Andertoons for the 6th is a confident reassurance that 2018 is a normal, healthy year after all. Or can be. Prime numbers.

Mark O’Hare’s Citizen Dog rerun for the 6th is part of a sequence in which Fergus takes a (human) child’s place in school. Mathematics gets used as a subject that’s just a big pile of unfamiliar terms if you just jump right in. Most subjects are like this if you take them seriously, of course. But mathematics has got an economy of technical terms to stuff into people’s heads, and that have to be understood to make any progress. In grad school my functional analysis professor took great mercy on us, and started each class with re-writing the definitions of all the technical terms introduced the previous class. Also of terms that might be a bit older, but that are important to get right, which is why I got through it confident I knew what a Sobolev Space was. (It’s a collection of functions that have enough derivatives to do your differential equations problem.) Numerator and denominator, we’re experts on by now.

Reading the Comics, December 2, 2017: Showing Intelligence Edition


November closed out with another of those weeks not quite busy enough to justify splitting into two. I blame Friday and Saturday. Nothing mathematically-themed was happening them. Suppose some days are just like that.

Johnny Hart’s Back To BC for the 26th is an example of using mathematical truths as profound statements. I’m not sure that I’d agree with just stating the Pythagorean Theorem as profound, though. It seems like a profound statement has to have some additional surprising, revelatory elements to it. Like, knowing the Pythagorean theorem is true means we can prove there’s exactly one line parallel to a given line and passing through some point. Who’d see that coming? I don’t blame Hart for not trying to fit all that into one panel, though. Too slow a joke. The strip originally ran the 4th of September, 1960.

Tom Toles’s Randolph Itch, 2 am rerun for the 26th is a cute little arithmetic-in-real-life panel. I suppose arithmetic-in-real-life. Well, I’m amused and stick around for the footer joke. The strip originally ran the 24th of February, 2002.

Zach Weinersmith’s Saturday Morning Breakfast Cereal makes its first appearance for the week on the 26th. It’s an anthropomorphic-numerals joke and some wordplay. Interesting trivia about the whole numbers that never actually impresses people: a whole number is either a perfect square, like 1 or 4 or 9 or 16 are, or else its square root is irrational. There’s no whole number with a square root that’s, like, 7.745 or something. Maybe I just discuss it with people who’re too old. It seems like the sort of thing to reveal to a budding mathematician when she’s eight.

Saturday Morning Breakfast Cereal makes another appearance the 29th. The joke’s about using the Greek ε, which has a long heritage of use for “a small, positive number”. We use this all the time in analysis. A lot of proofs in analysis are done by using ε in a sort of trick. We want to show something is this value, but it’s too hard to do. Fine. Pick any ε, a positive number of unknown size. So then we’ll find something we can calculate, and show that the difference between the thing we want and the thing we can do is smaller than ε. And that the value of the thing we can calculate is that. Therefore, the difference between what we want and what we can do is smaller than any positive number. And so the difference between them must be zero, and voila! We’ve proved what we wanted to prove. I have always assumed that we use ε for this for the association with “error”, ideally “a tiny error”. If we need another tiny quantity we usually go to δ, probably because it’s close to ε and ‘d’ is still a letter close to ‘e’. (The next letter after ε is ζ, which carries other connotations with it and is harder to write than δ is.) Anyway, Weinersmith is just doing a ha-ha, your penis is small joke.

Samson’s Dark Side of the Horse for the 28th is a counting-sheep joke. It maybe doesn’t belong here but I really, really like the art of the final panel and I want people to see it.

Arnoldine: 'If you're so SMART, what's the SQUARE ROOT of a million?!' Arnold, after a full panel's thought: 'FIVE!' Arnoldine: 'OK! What's the square root of TWO MILLION?!'
Bud Grace’s Piranha Club for the 29th of November, 2017. So do always remember the old advice for attorneys and people doing investigative commissions: never ask a question you don’t already know the answer to.

Bud Grace’s Piranha Club for the 29th is, as with Back to BC, an attempt at showing intelligence through mathematics. There are some flaws in the system. Fun fact: since one million is a perfect square, Arnold could have answered within a single panel. (Also fun fact: I am completely unqualified to judge whether something is a “fun” fact.)

Jason Chatfield’s Ginger Meggs for the 29th is Ginger subverting the teacher’s questions, like so many teacher-and-student jokes will do.

Dan Thompson’s Brevity for the 30th is the anthropomorphic geometric figures joke for the week.

There seems to be no Mark Anderson’s Andertoons for this week. There’ve been some great ones (like on the 26th or the 28th and the 29th) but they’re not at all mathematical. I apologize for the inconvenience and am launching an investigation into this problem.

Reading the Comics, January 16, 2017: Numerals Edition


Comic Strip Master Command decreed that last week should be busy again. So I’m splitting its strips into two essays. It’s a week that feels like it had more anthropomorphic numerals jokes than usual, but see if I actually count these things.

2 asks 4: 'Six, six, six, can't you think of anything but six?'
Mike Peters’s Mother Goose and Grimm for the 15th of January, 2017. I understand that sometimes you just have to use the idea you have instead of waiting for something that can best use the space available, but really, a whole Sunday strip for a single panel? And a panel that’s almost a barren stage?

Mike Peters’s Mother Goose and Grimm for the 15th I figured would be the anthropomorphic numerals joke for the week. Shows what I know. It is an easy joke, but I do appreciate the touch of craft involved in picking the numerals. The joke is just faintly dirty if the numbers don’t add to six. If they were a pair of 3’s, there’d be the unwanted connotations of a pair of twins talking about all this. A 6 and a 0 would make at least one character weirdly obsessed. So it has to be a 4 and a 2, or a 5 and a 1. I imagine Peters knew this instinctively, at this point in his career. It’s one of the things you learn in becoming an expert.

Mason Mastroianni, Mick Mastroianni, and Perri Hart’s B.C. for the 15th is mostly physical comedy, with a touch of — I’m not sure what to call this kind of joke. The one where a little arithmetic error results in bodily harm. In this sort of joke it’s almost always something not being carried that’s the error. I suppose that’s a matter of word economy. “Forgot to carry the (number)” is short, and everybody’s done it. And even if they don’t remember making this error, the phrasing clarifies to people that it’s a little arithmetic mistake. I think in practice mistaking a plus for a minus (or vice-versa) is the more common arithmetic error. But it’s harder to describe that clearly and concisely.

Jef Mallett’s Frazz for the 15th puzzled me. I hadn’t heard this thing the kid says about how if you can “spew ten random lines from a classic movie” to convince people you’ve seen it. (I don’t know the kid’s name; it happens.) I suppose that it would be convincing, though. I certainly know a couple lines from movies I haven’t seen, what with living in pop culture and all that. But ten would be taxing for all but the most over-saturated movies, like any of the Indiana Jones films. (There I’m helped by having played the 90s pinball machine a lot.) Anyway, knowing ten random mathematics things isn’t convincing, especially since you can generate new mathematical things at will just by changing a number. But I would probably be convinced that someone who could describe what’s interesting about ten fields of mathematics had a decent understanding of the subject. That requires remembering more stuff, but then, mathematics is a bigger subject than even a long movie is.

In Bill Holbrook’s On The Fastrack for the 16th Fi speaks of tallying the pluses and minuses of her life. Trying to make life into something that can be counted is an old decision-making technique. I think Benjamin Franklin explained how he found it so useful. It’s not a bad approach if a choice is hard. The challenging part is how to weight each consideration. Getting into fractions seems rather fussy to me, but some things are just like that. There is the connotation here that a fraction is a positive number smaller than 1. But the mathematically-trained (such as Fi) would be comfortable with fractions larger than 1. Or also smaller than zero. “Fraction” is no more bounded than “real number”. So, there’s the room for more sweetness here than might appear to the casual reader.

'In a couple of weeks I'm getting married, so I'm taking stock of my life, adding up the pluses and minuses that factor into my goals.' 'Am I a positive or a negative integer?' 'You're a fraction.' 'How presumptuous of me.'
Bill Holbrook’s On The Fastrack for the 16th of January, 2017. Were I in Dethany’s position I would have asked about being a positive or negative number, but then that would leave Holbrook without a third panel. Dethany knows what her author needs most.

Scott Hilburn’s The Argyle Sweater for the 16th is the next anthropomorphic numerals joke for this week. I’m glad Hilburn want to be in my pages more. 5’s concern about figuring out x might be misplaced. We use variables for several purposes. One of them is as a name to give a number whose value we don’t know but wish to work out, and that’s how we first see them in high school algebra. But a variable might also be a number whose value we don’t particularly care about and will never try to work out. This could be because the variable is a parameter, with a value that’s fixed for a problem but not what we’re interested in. We don’t typically use ‘x’ for that, though; usually parameter are something earlier in the alphabet. That’s merely convention, but it is convention that dates back to René Descartes. Alternatively, we might use ‘x’ as a dummy variable. A dummy variable serves the same role that falsework on a building or a reference for an artistic sketch does. We use dummy variables to organize and carry out work, but we don’t care what its values are and we don’t even see the dummy variable in the final result. A dummy variable can be any name, but ‘x’ and ‘t’ are popular choices.

Terry LaBan and Patty LaBan’s Edge City rerun for the 16th plays on the idea that mathematics people talk in algebra. Funny enough, although, “the opposing defense is a variable of 6”? That’s an idiosyncratic use of “variable”. I’m going to suppose that Charles is just messing with Len’s head because, really, it’s fun doing a bit of that.