Reading the Comics, September 7, 2019: The Minor Ones of the Week


Part of my work reading lots of comic strips is to report the ones that mention mathematics, even if the mention is so casual there’s no building an essay around them. Here’s the minor mathematics mentions of last week.

Gordon Bess’s Redeye for the 1st is a joke about dividing up a prize. There’s also a side joke that amounts to a person having to do arithmetic on his fingers.

Bob Scott’s Bear With Me for the 3rd has Molly and the Bear in her geometry class. Bear’s shown as surprised the kids are still learning Euclidean geometry, which is your typical joke about the character with a particularly deep knowledge of a narrow field.

Wulff and Morgenthaler’s Truth Facts for the 4th is a Venn Diagram joke about the futility of attraction . I don’t know whether this is a repeat.

Gary Brookins’s Pluggers for the 5th is the old joke about how one never uses algebra in real life. The strip is not dated as a repeat. But I’d be surprised if this joke hasn’t run in Pluggers before. I didn’t have a tag for Pluggers before, but there was a time I wasn’t tagging the names of comic strips.

Richard Thompson’s Richard’s Poor Almanac for the 5th is a repeat (it has to be), featuring another of Thompson’s non-Euclidean plants.


And I continue to read the daily comics. Sunday at this link should be a fresh essay about the past week’s strips. Tomorrow, all going well, I’ll have the letter D’s representative in the Fall 2019 A-to-Z sequence. Thank you for reading.

Advertisements

Reading the Comics, August 10, 2019: In Security Edition


There were several more comic strips last week worth my attention. One of them, though, offered a lot for me to write about, packed into one panel featuring what comic strip fans call the Wall O’ Text.

Bea R’s In Security for the 9th is part of a storyline about defeating an evil “home assistant”. The choice of weapon is Michaela’s barrage of questions, too fast and too varied to answer. There are some mathematical questions tossed in the mix. The obvious one is “zero divided by two equals zero, but why’z two divided by zero called crazy town?” Like with most “why” mathematics questions there are a range of answers.

Evil Alexa: 'I ordered a spanking for you: express.' Sedine: 'DIE!' Michaela: 'How 'we defeat this evil genius? (To the home-assistant) What's the diffrence between wrong and right? Who's got better fries, McD or BK? Why's a ball round? Is a wingless fly a 'walk'? Why'z all this communism so capitalistic? If Jeff Bezos is so rich why'zint he abel to own a toupee? Zero divded by two equals zero, but why'z two divided by zero called crazy town? So if infinity is forever, isn't that crazy too? If reality is a human construck why does my mommy act so normal? Tell me!' Sputtering Alexia: 'I - I must compute!'
Bea R’s In Security for the 9th of August, 2019. This is a new comic strip for these parts. So this essay and any future ones which explore topics raised by In Security are to be be at this link.

The obvious one, I suppose, is to appeal to intuition. Think of dividing one number by another by representing the numbers with things. Start with a pile of the first number of things. Try putting them into the second number of bins. How many times can you do this? And then you can pretty well see that you can fill two bins with zero things zero times. But you can fill zero bins with two things — well, what is filling zero bins supposed to mean? And that warns us that dividing by zero is at least suspicious.

That’s probably enough to convince a three-year-old, and probably most sensible people. If we start getting open-mined about what it means to fill no containers, we might say, well, why not have two things fill the zero containers zero times over, or once over, or whatever convenient answer would work? And here we can appeal to mathematical logic. Start with some ideas that seem straightforward. Like, that division is the inverse of multiplication. That addition and multiplication work like you’d guess from the way integers work. That distribution works. Then you can quickly enough show that if you allow division by zero, this implies that every number equals every other number. Since it would be inconvenient for, say, “six” to also equal “minus 113,847,506 and three-quarters” we say division by zero is the problem.

This is compelling until you ask what’s so great about addition and multiplication as we know them. And here’s a potentially fruitful line of attack. Coming up with alternate ideas for what it means to add or to multiply are fine. We can do this easily with modular arithmetic, that thing where we say, like, 5 + 1 equals 0 all over again, and 5 + 2 is 1 and 5 + 3 is 2. This can create a ring, and it can offer us wild ideas like “3 times 2 equals 0”. This doesn’t get us to where dividing by zero means anything. But it hints that maybe there’s some exotic frontier of mathematics in which dividing by zero is good, or useful. I don’t know of one. But I know very little about topics like non-standard analysis (where mathematicians hypothesize non-negative numbers that are not zero, but are also smaller than any positive number) or structures like surreal numbers. There may be something lurking behind a Quanta Magazine essay I haven’t read even though they tweet about it four times a week. (My twitter account is, for some reason, not loading this week.)

Michaela’s questions include a couple other mathematically-connected topics. “If infinity is forever, isn’t that crazy, too?” Crazy is a loaded word and probably best avoided. But there are infinity large sets of things. There are processes that take infinitely many steps to complete. Please be kind to me in my declaration “are”. I spent five hundred words on “two divided by zero”. I can’t get into that it means for a mathematical thing to “exist”. I don’t know. In any event. Infinities are hard and we rely on them. They defy our intuition. Mathematicians over the 19th and 20th centuries worked out fairly good tools for handling these. They rely on several strategies. Most of these amount to: we can prove that the difference between “infinitely many steps” and “very many steps” can be made smaller than any error tolerance we like. And we can say what “very many steps” implies for a thing. Therefore we can say that “infinitely many steps” gives us some specific result. A similar process holds for “infinitely many things” instead of “infinitely many steps”. This does not involve actually dealing with infinity, not directly. It involves dealing with large numbers, which work like small numbers but longer. This has worked quite well. There’s surely some field of mathematics about to break down that happy condition.

And there’s one more mathematical bit. Why is a ball round? This comes around to definitions. Suppose a ball is all the points within a particular radius of a center. What shape that is depends on what you mean by “distance”. The common definition of distance, the “Euclidean norm”, we get from our physical intuition. It implies this shape should be round. But there are other measures of distance, useful for other roles. They can imply “balls” that we’d say were octahedrons, or cubes, or rounded versions of these shapes. We can pick our distance to fit what we want to do, and shapes follow.

I suspect but do not know that it works the other way, that if we want a “ball” to be round, it implies we’re using a distance that’s the Euclidean measure. I defer to people better at normed spaces than I am.

Wavehead, standing in front of a digital blackboard which has the problem 3 + 5 on it: 'I'm just saying, with all the computing power in this electronic board, I bet it could take care of this itself.'
Mark Anderson’s Andertoons for the 10th of August, 2019. The handful of times that I’ve mentioned explore Andertoons around here can be found at this link.

Mark Anderson’s Andertoons for the 10th is the Mark Anderson’s Andertoons for the week. It’s also a refreshing break from talking so much about In Security. Wavehead is doing the traditional kid-protesting-the-chalkboard-problem. This time with an electronic chalkboard, an innovation that I’ve heard about but never used myself.

Molly: 'We'll play after I finish my homework. I'm studying pi.' Bear: (Panel filled with the word GUSH! His mouth dangles open, and he drools.) 'You said pie!!'
Bob Scott’s Bear With Me for the 10th of August, 2019. Appearances by Bear With Me should be at this link. This strip originally ran the 15th of October, 2015, when the comic was titled Molly and the Bear.

Bob Scott’s Bear With Me for the 10th is the Pi Day joke for the week.


And that last one seemed substantial enough to highlight. There were even slighter strips. Among them: Mark Anderson’s Andertoons for the 4th features latitude and longitude, the parts of spherical geometry most of us understand. At least feel we understand. Jim Toomey’s Sherman’s Lagoon for the 8th mentions mathematics as the homework parents most dread helping with. Larry Wright’s Motley rerun for the 10th does a joke about a kid being bad at geography and at mathematics.


And that’s this past week’s mathematics comics. Reading the Comics essays should all be gathered at this link. Thanks for reading this far.

Reading the Comics, March 25, 2019: Bear Edition


I’m again stepping slightly outside the normal chronological progression of these posts. This is to let me share several days’ worth of Bob Scott’s Bear With Me. It’ll make for cleaner thematic breaks in the week.

Wayno and Piraro’s Bizarro for the 25th is a precision joke. That a proposal might be more than half-baked is reasonable enough. Pinning down its baked-ness to one part in a thousand? Nice gentle absurdity. The panel does showcase two things that connote accuracy, though. Percentages read as confident knowledge: to say something is half-done seems somehow a more uncertain thing than to say something is 50 percent done. And decimal places suggest precision also.

Boss at the Precision Calibration Corporation, chewing out a subordinate: 'Another one of your 64.3 percent-baked proposals, Wilkins?'
Wayno and Piraro’s Bizarro for the 25th of March, 2019. Essays that discuss Bizarro are gathered at this link.

There are different, but not wholly separate, things to value in a measurement. Precision seems like the desirable one. It looks like superior knowledge. But there are other and more important things. One is repeatability: if you measure the same thing again, do you get approximately the same number? If the boss re-read the proposal and judged it to be 24.7 percent baked, would we feel confident in the numbers? And another is whether the measurement corresponds to what we would like to know. The diameter of a person’s head can be measured precisely. And repeatably; the number won’t change very much day to day. But suppose what we really care to know is the person’s intelligence. Does this precision and repeatability matter, given how much intelligence varies for even people of about the same head size?

Amanda, on the phone: 'Hey, Gramps, what's up?' Grandpa: 'I'm watching Wheel of Fortune.' 'How's that going?' 'There's a group of purses on here totalling $2900!! I buy a seven-dollar wallet, and it lasts me ten years!' Amanda ;'So these purses will last them ... [ math ] over four thousand years [*] by your math. That's value.' Grandpa: 'That's almost one thousand dollars per bag, Amanda!' [*]: I think My degree is not in math.
Amanda El-Dweek’s Amanda the Great for the 25th of March, 2019. I had expected this to be a new tag, but no. I’ve mentioned Amanda the Great before, in an essay at this link. Still, it has been a while.

Amanda El-Dweek’s Amanda the Great for the 25th starts from someone watching a game show. That’s a great way to find casual mathematics problems. Often these involve probability questions, and expectation values. That is, what would be the wisest course if you could play this game thousands or millions or billions of times?

This one dodges that, though, as the strip gets to Gramps shocked by the high price of designer women’s purses. And it features a great bit of mental arithmetic on Amanda’s part. A $2900 purse is more than four hundred times the cost of a $7 wallet. The way I spot that is noticing that 29 is awfully close to 28, but more than it. And 2800 divided by 7 is easy: it’s a hundred times 28 divided by 7. Grant the supposition that cost scales with the wallet or purse’s lifespan. Amanda nails it. If we pretend that more precision would help, she’d be forecasting a nearly 4,143-year lifespan for the purses. I admit that seems to me like an over-engineered purse.

Molly, reading homework: 'Farmer Smith has 49 acres of blueberries, and each acre has 179 pounds of blueberries, so how many pounds of blueberries will Farmer Smith harvest?' Bear: '8,771 pounds. That would be 1,710,355 blueberries.' Molly: 'Wow, Bear! How do you know that?' Bear: 'How can you NOT? Blueberries are amazing!'
Bob Scott’s Bear With Me for the 25th of March, 2019. This is also not a new tag, although I thought it might be. Bear With Me essays should appear at this link.

Bob Scott’s Bear With Me for the 25th starts a string of word problem jokes. I like them, not just for liking Bear. I also like the comic motif of the character who’s ordinarily a buffoon but has narrow areas of extreme competence. There was a fun bit on one episode of The Mary Tyler Moore Show in which Ted Baxter was able to do some complex arithmetic in his head just by imagining there was a dollar sign in front of it, for an example close to this one.

Molly: 'Farmer Brown has 3 crates of carrots and each crate holds 12 pounds of carrots. How many carrots does Farmer Brown have?' Bear: 'I have no idea.' Molly: 'But you solved yesterday's math problem easily.' Bear: 'That problem was about blueberries and this one is about carrots.' Molly: 'So?' Bear: 'I don't like carrots.'
Bob Scott’s Bear With Me for the 26th of March, 2019. The comic strip Bear With Me started its run as Molly And The Bear. The title shifted as, I think, Scott realized the most reliably interesting interactions were between Bear and Molly’s Dad. But Molly isn’t out of the strip either.

Bob Scott’s Bear With Me for the 26th Bear’s arithmetic skills vary with his interest in solving the problem. This is comically exaggerated, yes. It’s something I think is basically true though. I’ve noticed I have an easier time solving problems I’m curious about, for example. I suspect most of us think the sae way, or at least expect people to do so. If we din’t, we wouldn’t worry so about motivating the solving of problems. Molly only has story problems about farmers gathering things because it’s supposed a person would want to know, given this setup, what they might expect to gather.

Molly: 'Bear, what's 4,400 blueberries divided by 2?' Bear: 'What?' Molly: 'Divide 4,400 blueberries by 2.' Bear: 'Why would I want to divide them?!' Molly: 'So you can share them with me!' Bear: 'But you can just go to the store and buy your own. And wow, what a great idea!! Let's go to the store now!!' Molly: 'I hate math.'
Bob Scott’s Bear With Me for the 27th of March, 2019. Peculiar thing is I don’t have any strips tagged as Molly And The Bear, even though the strip runs a lot of reruns and some of those have mathematical content. If I’m searching my own archives correctly that’s just because I didn’t find any old comics with enough mathematical content to discuss here. Curious, that. You’d think Molly would do more word problems, especially given the retro aesthetic Bob Scott’s chosen for the comic strip.

Bob Scott’s Bear With Me for the 27th shows a hazard in making a story too real-world: someone might want to bring in solutions that fall outside the course material. I don’t think that happens much in mathematics. My love teaches philosophy, though, and there is a streak of students who will not accept the premises of a thought experiment. They’ll insist on disproving that the experiment could happen, or stand on solutions that involve breaking the selection of options.


Last week was busy for mathematically-themed comic strips. I’ll have more Reading the Comics posts, at this link, in a couple days. Thanks as always for reading any of these.

Reading the Comics, March 9, 2019: In Which I Explain Eleven Edition


I thought I had a flood of mathematically-themed comic strips last week. On reflection, many of them were slight enough not to need further context. You’ll see in the paragraph of not-discussed strips at the end of this. What did rate discussion turned out to get more interesting to me the more I wrote about them.

Stephen Beals’s Adult Children for the 6th uses mathematics as icon of things that are indisputably true. Two plus two equals four is a good example of such. If we take the ordinary meanings of ‘two’ and ‘plus’ and ‘equals’ and ‘four’ there’s no disputing it. The result follows from some uncontroversial-seeming axioms and a lot of deduction. By the rules of logic, the conclusion has to be true, whoever makes it. Even, for that matter, if nobody makes it. It’s difficult to imagine a universe in which nobody ever notices two plus two equals four. But we can imagine that there are mathematical truths that will never be noticed by anyone. (Here’s one. There is some largest finite whole number that any human-created project will ever use in any context. Consider the equation represented by “that number plus two equals (even bigger number)”.)

Harvey: 'Everyone ignores facts! Two plus two equals four, you know what I mean?' Friend: 'Yes. In your opinion, two plus two equals four.' Harvey: 'Noooo! Facts aren't opinions! There are no true facts, fake facts, iffy facts ... just facts! Let's judge things based on the facts!' Friend: 'And how do these facts make you feel?' Harvey, clutching his chest. 'Like you're giving me a fact attack.'
Stephen Beals’s Adult Children for the 6th of March, 2019. Essays inspired by something mentioned in Adult Children appear at this link.

But you see cards palmed there. What do we mean by ‘two’? Have we got a good definition? Might there be a different definition that’s more useful? Probably not, for ‘two’ anyway. But a part of mathematics, especially as a field develops, is working out what are the important concepts, and what their definitions should be. What a ‘function’ is, for example, went through a lot of debate and change over the 19th century. There is an elusiveness to facts, even in mathematics, where you’d think epistemology would be simpler.

Lauren's problem: '(x^2 y - 3y^2 + 5xy^2) - (-x^2 y + 3xy^2 - 3y^2). Which of the following is equivalent to the expression above? a. 4x^2 y^2. b. 8xy^2 - 6y^2. c. 2x^2 + 2xy^2. d. 2x^2 y + 8xy^2 - 6y^2.' Next problem: 'If a/b = 2 what's the value of 4b/a? a. 0. b. 1. c. 2. d. 4.' Bob, holding up empty ice trays: 'If a and b are empty because Lauren is selfish and not thinking of Bob, what are the chances he gets to have an iced drink? a. slim, b. none, c. all of the above?'
Frank Page’s Bob the Squirrel for the 6th of March, 2019. When I’m moved to write something based on Bob the Squirrel the essays should be tagged to appear at this link.

Frank Page’s Bob the Squirrel for the 6th continues the SAT prep questions from earlier in the week. There’s two more problems in shuffling around algebraic expressions here. The first one, problem 5, is probably easiest to do by eliminating wrong answers. (x^2 y - 3y^2 + 5xy^2) - (-x^2 y + 3xy^2 - 3y^2) is a tedious mess. But look at just the x^2 y terms: they have to add up to 2x^2 y , so, the answer has to be either c or d. So next look at the 3y^2 terms and oh, that’s nice. They add up to zero. The answer has to be c. If you feel like checking the 5xy^2 terms, go ahead; that’ll offer some reassurance, if you do the addition correctly.

The second one, problem 8, is probably easier to just think out. If \frac{a}{b} = 2 then there’s a lot of places to go. What stands out to me is that 4\frac{b}{a} has the reciprocal of \frac{a}{b} in it. So, the reciprocal of \frac{a}{b} has to equal the reciprocal of 2 . So \frac{a}{b} = \frac{1}{2} . And 4\frac{b}{a} is, well, four times \frac{b}{a} , so, four times one-half, or two. There’s other ways to go about this. In honestly, what I did when I looked at the problem was multiply both sides of \frac{a}{b} = 2 by \frac{b}{a} . But it’s harder to explain why that struck me as an obviously right thing to do. It’s got shortcuts I grew into from being comfortable with the more methodical approach. Someone who does a lot of problems like these will discover shortcuts.

Ruthie on the phone: 'Hello, homework hotline? I have an arithmetic question. Why isn't eleven called oneteen, and twelve called twoteen? ... You don't know? ... May I speak to your supervisor, please?'
Rick Detorie’s One Big Happy for the 6th of March, 2019. This particular strip is several years old, but I can’t pin down its original run more precisely than that. Essays featuring One Big Happy should be at this link.

Rick Detorie’s One Big Happy for the 6th asks one of those questions you need to be a genius or a child to ponder. Why don’t the numbers eleven and twelve follow the pattern of the other teens, or for that matter of twenty-one and thirty-two, and the like? And the short answer is that they kind of do. At least, “eleven” and “twelve”, etymologists agree, derive from the Proto-Germanic “ainlif” and “twalif”. If you squint your mouth you can get from “ain” to “one” (it’s probably easier if you go through the German “ein” along the way). Getting from “twa” to “two” is less hard. If my understanding is correct, etymologists aren’t fully agreed on the “lif” part. But they are settled on it means the part above ten. Like, “ainlif” would be “one left above ten”. So it parses as one-and-ten, putting it in form with the old London-English preference for one-and-twenty or two-and-thirty as word constructions.

It’s not hard to figure how “twalif” might over centuries mutate to “twelve”. We could ask why “thirteen” didn’t stay something more Old Germanic. My suspicion is that it amounts to just, well, it worked out like that. It worked out the same way in German, which switches to “-zehn” endings from 13 on. Lithuanian has all the teens end with “-lika”; Polish, similarly, but with “-ście”. Spanish — not a Germanic language — has “custom” words for the numbers up to 15, and then switches to “diecis-” as a prefix to the numbers 6 through 9. French doesn’t switch to a systematic pattern until 17. (And no I am not going to talk about France’s 80s and 90s.) My supposition is that different peoples came to different conclusions about whether they needed ten, or twelve, or fifteen, or sixteen, unique names for numbers before they had to resort to systemic names.

Here’s some more discussion of the teens, though, including some exploration of the controversy and links to other explanations.

Caption: '4 out of 5 Doctors agree ... ' Four, of five, chickens dressed as doctors: 'We are 80% of the doctors!'
Doug Savage’s Savage Chickens for the 6th of March, 2019. And the occasional essay based on Savage Chickens should be gathered at this link.

Doug Savage’s Savage Chickens for the 6th is a percentages comic. It makes reference to an old series of (American, at least) advertisements in which four out of five dentists would agree that chewing sugarless gum is a good thing. Shifting the four-out-of-five into 80% riffs is not just fun with tautologies. Percentages have this connotation of technical precision; 80% sounds like a more rigorously known number than “four out of five”. It doesn’t sound as scientific as “0.80”, quite. But when applied to populations a percentage seems less bizarre than a decimal.


Oh, now, and what about comic strips I can’t think of anything much to write about?
Ruben Bolling’s Super-Fun-Pak Comix for the 4th featured divisibility, in a panel titled “Fun Facts for the Obsessive-Compulsive”. Olivia James’s Nancy on the 6th was avoiding mathematics homework. Jonathan Mahood’s Bleeker: The Rechargeable Dog for the 7th has Skip avoiding studying for his mathematics test. Bob Scott’s Bear With Me for the 7th has Molly mourning a bad result on her mathematics test. (The comic strip was formerly known as Molly And The Bear, if this seems familiar but the name seems wrong.) These are all different comic strips, I swear. Bill Holbrook’s Kevin and Kell for the 8th has Rudy and Fiona in mathematics class. (The strip originally ran in 2013; Comics Kingdom has started running Holbrook’s web comic, but at several years’ remove.) And, finally, Alex Hallatt’s Human Cull for the 8th talks about “110%” as a phrase. I don’t mind the phrase, but the comic strip has a harder premise.


And that finishes the comic strips from last week. But Pi Day is coming. I’ll be ready for it. Shall see you there.

Reading the Comics, March 17, 2018: Pi Day 2018 Edition


So today I am trying out including images for all the mathematically-themed comic strips here. This is because of my discovery that some links even on GoComics.com vanish without warning. I’m curious how long I can keep doing this. Not for legal reasons. Including comics for the purpose of an educational essay about topics raised by the strips is almost the most fair use imaginable. Just because it’s a hassle copying the images and putting them up on WordPress.com and that’s even before I think about how much image space I have there. We’ll see. I might try to figure out a better scheme.

Also in this batch of comics are the various Pi Day strips. There was a healthy number of mathematically-themed comics on the 14th of March. Many of those were just coincidence, though, with no Pi content. I’ll group the Pi Day strips together.

Counselor: 'Come in Funky! What seems to be troubling you?' Funky: 'We're nothing but computer numbers at this school, Mr Fairgood! Nobody cares about us as persons! I'm tired of being just a number! I want a chance to make some of my own decisions!' Counselor: 'Okay! What would you like to be, odd or even?'
Tom Batiuk’s Funky Winkerbean for the 2nd of April, 1972 and rerun the 11th of March, 2018. Maybe I’m just overbalancing for the depression porn that Funky Winkerbean has become, but I find this a funny bordering-on-existential joke.

Tom Batiuk’s Funky Winkerbean for the 2nd of April, 1972 is, I think, the first appearance of Funky Winkerbean around here. Comics Kingdom just started running the strip, as well as Bud Blake’s Tiger and Bill Hoest’s Lockhorns, from the beginning as part of its Vintage Comics roster. And this strip really belonged in Sunday’s essay, but I noticed the vintage comics only after that installment went to press. Anyway, this strip — possibly the first Sunday Funky Winkerbean — plays off a then-contemporary fear of people being reduced to numbers in the face of a computerized society. If you can imagine people ever worrying about something like that. The early 1970s were a time in American society when people first paid attention to the existence of, like, credit reporting agencies. Just what they did and how they did it drew a lot of critical examination. Josh Lauer’s recently published Creditworthy: a History of Consumer Surveillance and Financial Identity in America gets into this.

Bear: 'Can I come in?' Molly: 'Sure.' Bear: 'What happened?' Molly: 'I got an F on my math test.' Bear: 'But you're a genius at math.' Molly: 'I didn't have time to study.' Bear: 'Is it because I distracted you with my troubles yesterday?' Molly: 'No. Well, maybe. Not really. Okay, sure. Yes. I don't know. ARRGHHHH!!!'
Bob Scott’s Bear With Me for the 14th of March, 2018. Every conversation with a high-need, low-self-esteem friend.

Bob Scott’s Bear With Me for the 14th sees Molly struggling with failure on a mathematics test. Could be any subject and the story would go as well, but I suppose mathematics gets a connotation of the subject everybody has to study for, even the geniuses. (The strip used to be called Molly and the Bear. In either name this seems to be the first time I’ve tagged it, although I only started tagging strips by name recently.)

Jeff: 'Next November you and I will have appeared in this comic strip for 45 years!' Mutt: 'Mmm. 45 years! That's 540 months or 2,340 weeks! So, the boss drew us 1,436 times ... one each day of the year! Now, 16,436 until I'm 90 ... ' Jeff: 'What have you been working on?' Mutt: 'Oh, I'm just calculating what we'll be doing during the next 45 years!' (Jeff leaves having clobbered Mutt.) Mutt: 'No! Not this!'
Bud Fisher’s Mutt and Jeff rerun for the 14th of March, 2018. The comic strip ended the 26th of June, 1983 — I remember the announcement of its ending in the (Perth Amboy) News-Tribune, our evening paper, and thinking it seemed illicit that an ancient comic strip like that could end. It was a few months from being 76 years old then.

Bud Fisher’s Mutt and Jeff rerun for the 14th is a rerun from sometime in 1952. I’m tickled by the problem of figuring out how many times Fisher and his uncredited assistants drew Mutt and Jeff. Mutt saying that the boss “drew us 14,436 times” is the number of days in 45 years, so that makes sense if he’s counting the number of strips drawn. The number of times that Mutt and Jeff were drawn is … probably impossible to calculate. There’s so many panels each strip, especially going back to earlier and earlier times. And how many panels don’t have Mutt or don’t have Jeff or don’t have either in them? Jeff didn’t appear in the strip until March of 1908, for example, four months after the comic began. (With a different title, so the comic wasn’t just dangling loose all that while.)

Diagram: Pie Chart, Donut Chart (pie chart with the center missing), Tart Charts (several small pie charts), Shepherd's Pie Chart (multiple-curve plot with different areas colored differently), Tiramisu Chart (multiple-curve plot with all areas colored the same), and Lobster Thermidor Chart (lobster with chunks labelled).
Doug Savage’s Savage Chickens for the 14th of March, 2018. Yeah, William Playfair invented all these too.

Doug Savage’s Savage Chickens for the 14th is a collection of charts. Not all pie charts. And yes, it ran the 14th but avoids the pun it could make. I really like the tart charts, myself.

And now for the Pi Day strips proper.

[PI sces ] Guy at bar talking to Pi: 'Wow, so you were born on March 14th at 1:59, 26 seconds? What're the odds?'
Scott Hilburn’s The Argyle Sweater for the 14th of March, 2018. Also a free probability question, if you’re going to assume that every second of the year is equally likely to be the time of birth.

Scott Hilburn’s The Argyle Sweater for the 14th starts the Pi Day off, of course, with a pun and some extension of what makes 3/14 get its attention. And until Hilburn brought it up I’d never thought about the zodiac sign for someone born the 14th of March, so that’s something.

Pi figure, wearing glasses, reading The Neverending Story.
Mark Parisi’s Off The Mark for the 14th of March, 2018. Really the book seems a little short for that.

Mark Parisi’s Off The Mark for the 14th riffs on one of the interesting features of π, that it’s an irrational number. Well, that its decimal representation goes on forever. Rational numbers do that too, yes, but they all end in the infinite repetition of finitely many digits. And for a lot of them, that digit is ‘0’. Irrational numbers keep going on with more complicated patterns. π sure seems like it’s a normal number. So we could expect that any finite string of digits appears somewhere in its decimal expansion. This would include a string of digits that encodes any story you like, The Neverending Story included. This does not mean we might ever find where that string is.

[ How ancient mathematicians amused themselves, AKA how to celebrate Pi Day today; third annual Pi-Easting Contest. Emcee: 'And HERE he is, our defending champ, that father of conic sections --- ARCHIMEDES!' They're all eating cakes shaped like pi.
Michael Cavna’s Warped for the 14th of March, 2018. Yes, but have you seen Pythagoras and his golden thigh?

Michael Cavna’s Warped for the 14th combines the two major joke threads for Pi Day. Specifically naming Archimedes is a good choice. One of the many things Archimedes is famous for is finding an approximation for π. He’d worked out that π has to be larger than 310/71 but smaller than 3 1/7. Archimedes used an ingenious approach: we might not know the precise area of a circle given only its radius. But we can know the area of a triangle if we know the lengths of its legs. And we can draw a series of triangles that are enclosed by a circle. The area of the circle has to be larger than the sum of the areas of those triangles. We can draw a series of triangles that enclose a circle. The area of the circle has to be less than the sum of the areas of those triangles. If we use a few triangles these bounds are going to be very loose. If we use a lot of triangles these bounds can be tight. In principle, we could make the bounds as close together as we could possibly need. We can see this, now, as a forerunner to calculus. They didn’t see it as such at the time, though. And it’s a demonstration of what amazing results can be found, even without calculus, but with clever specific reasoning. Here’s a run-through of the process.

[ To Stephen Hawking, Thanks for making the Universe a little easier for the rest of us to understand ] Jay: 'I suppose it's only appropriate that he'd go on Pi Day.' Roy: 'Not to mention, Einstein's birthday.' Katherine: 'I'll bet they're off in some far reach of the universe right now playing backgammon.'
John Zakour and Scott Roberts’s Working Daze for the 15th of March, 2018. No, you should never read the comments, but here, really, don’t read the comments.

John Zakour and Scott Roberts’s Working Daze for the 15th is a response to Dr Stephen Hawking’s death. The coincidence that he did die on the 14th of March made for an irresistibly interesting bit of trivia. Zakour and Roberts could get there first, thanks to working on a web comic and being quick on the draw. (I’m curious whether they replaced a strip that was ready to go for the 15th, or whether they normally work one day ahead of publication. It’s an exciting but dangerous way to go.)