So If You Can’t Win The Clock Game You Should Feel Bad


I have one last important thing to discuss before I finish my months spun off an offhand comment from The Price Is Right. There are a couple minor points I can also follow up on, but I don’t think they’re tied tightly enough to the show to deserve explicit mention or rate getting “tv” included as one of my keywords. Here’s my question: what’s the chance of winning an average pricing game, after one has got an Item Up For Bid won?

At first glance this is several dozen questions, since there are quite a few games, some winnable on pure skill — “Clock Game”, particularly, although contestants this season have been rotten at it, and “Hole In One … Or Two”, since a good miniature golfer could beat it — and some that are just never won — “Temptation” particularly — and some for which partial wins are possible — “Money Game” most obviously. For all, skill in pricing things help. For nearly all, there’s an element of luck.

I’m not going to attempt to estimate the chance of winning each of the dozens of pricing games. What I want is some kind of mean chance of winning, based on how contestants actually do. The tool I’ll use for this is the number of perfect episodes, episodes in which the contestant wins all six pricing games, and I’ll leave it to the definers of perfect such questions as what counts as a win for “Pay The Rent” (in which a prize of $100,000 is theoretically possible, but $10,000 is the most that has yet been paid out) or “Plinko” (theoretically paying up to $50,000, but which hasn’t done so in decades of playing).

Continue reading “So If You Can’t Win The Clock Game You Should Feel Bad”

Finding, and Starting to Understand, the Answer


If the probability of having one or fewer clean sweep episodes of The Price Is Right out of 6,000 aired shows is a little over one and a half percent — and it is — and we consider outcomes whose probability is less than five percent to be so unlikely that we can rule them out as happening by chance — and, last time, we did — then there are improbably few episodes where all six contestants came from the same seat in Contestants Row, and we can usefully start looking for possible explanations as to why there are so few clean sweeps. At least, that’s the conclusion at our significance level, that five percent.

But there’s no law dictating that we pick that five percent significance level. If we picked a one percent significance level, which is still common enough and not too stringent, then we would say this might be fewer clean sweeps than we expected, but it isn’t so drastically few as to raise our eyebrows yet. And we would be correct to do so. Depending on the significance level, what we saw is either so few clean sweeps as to be suspicious, or it’s not. This is why it’s better form to choose the significance level before we know the outcome; it feels like drawing the bullseye after shooting the arrow the other way around.

Continue reading “Finding, and Starting to Understand, the Answer”

The Significance of the Item Up For Bids


The last important idea missing before we can judge this problem about The Price Is Right clean sweeps of Contestants Row is the significance level. Whenever an experiment is run — whether it’s the classic probability class problems of flipping coins or rolling dice, or whether it’s watching 6,000 episodes of a game show to see whether any seat produces the most winners, or whether it’s counting the number of red traffic lights one gets during the commute — there are some outcomes which are reasonably likely, some which are unlikely, and some which are vanishingly improbable.

We have to decide that some outcomes have such a low probability of happening naturally that they represent something going on, and are not just the result of chance. How low that probability should be is our decision. There are some common dividing lines, but they’re common just because they represent numbers which human beings find to be nice round figures: five percent, one percent, half a percent, one-tenth of a percent. What significance level one picks depends on many factors, including what’s common in the field, how different outcomes are expected to be, even what one can afford. Physicists looking for evidence of new subatomic particles have an extremely high standard before declaring something is definitely a new particle, but, they can run particle detection experiments until they get such clear evidence.

To be fair, we ought to pick our significance level before we’ve worked out the probability of something happening, but this is the earliest I could discuss it with motivation for you to read about it. But if we take the five percent significance level, we see we know already that there’s a little more than a one and a half percent chance of there being as few clean sweeps as observed. The conclusion is obvious: all six winning contestants in an episode should have come from the same seat, over 6,000 episodes, more often than the one time Drew Carey claimed they had. We can start looking for explanations for why there should be this deficiency.

Or …

The First Tail


We became suspicious of the number of clean sweeps in The Price Is Right when there were not the expected six of them in 6,000 episodes. The chance there would be only one was about one and a half percent, not very high. But are there so few clean sweeps that we should be suspicious? That is, is the difference between the expected number of sweeps and the observed number so large as to be significant? Is it too big to just result from chance?

This is significance testing: is whatever quantity we mean to observe dramatically less than what is expected? Is it dramatically more? Is it at least different? Are these differences bigger than what could be expected by mere chance? For every statistician’s favorite example, a tossed fair coin will come up tails half the time; that means, of twenty flips, there are expected to be ten tails. But there being merely nine or as many as twelve is reasonable. Three or fifteen tails may be a little unlikely. Zero or twenty seem impossible. There’s a point where if our observations are so different from what we expect then we have to reject the idea that our observations and our expectations agree.

It’s not enough to say there’s a probability of only 1.5 percent that there should be exactly one clean sweep episode out of 6,000, though. It’s unlikely that should happen, but if we look at it, it’s unlikely there should be any outcome. Even the most likely result of 6,000 episodes, six clean sweeps, has only about one chance in six of happening. That’s near the chance that the next person you meet will have a birthday in either September or November. That isn’t absurdly unlikely, but, the person betting against it has the surer deal.

Continue reading “The First Tail”

A Simple Demonstration Which Does Not Clarify


When last we talked about the “clean sweep” of winning contestants coming from the same of four seats in Contestants Row for all six Items Up For Bid on The Price Is Right, we had got established the pieces needed if we suppose this to be a binomial distribution problem. That is, we suppose that any given episode has a probability, p, of successfully having all six contestants from the same seat, and a probability 1 – p of failing to have all six contestants from the same seat. There are N episodes, and we are interested in the chance of x of them being clean sweeps. From the production schedule we know the number of episodes N is about 6,000. We supposed the probability of a clean sweep to be about p = 1/1000, on the assumption that the chance of winning isn’t any better or worse for any contestant. The probability of there not being a clean sweep is then 1 – p = 999/1000. And we expected x = 6 clean sweeps, while Drew Carey claimed there had been only 1.

The chance of finding x successes out of N attempts, according to the binomial distribution, is the probability of any combination of x successes and N – x successes — which is equal to (p)(x) * (1 – p)(N – x) — times the number of ways there are to select x items out of N candidates. Either of those is easy enough to calculate, up to the point where we try calculating it. Let’s start out by supposing x to be the expected 6, and later we’ll look at it being 1 or other numbers.

Continue reading “A Simple Demonstration Which Does Not Clarify”

Off By A Factor Of 720 (Or More)


To work out the task of figuring out whether it was plausible that there had been only one “clean sweep”, of all six contestants winning the Item Up For Bid on The Price Is Right coming from the same seat, we had started a little into the binomial distribution. The key ideas included that we have “Bernoulli trials”, a number of independent chances for some condition to happen — in this case, we had about 6,000 such trials, the number of hourlong episodes of The Price Is Right — and a probability p of successfully seeing some event occur on any one episode. We worked that out to be somewhere about p = 1/1000, if every seat is equally likely to win every time. There is also a probability of 1 – p or 999/1000 of the event failing to see this event, that is, that one or more contestants comes from a different seat.

To find the probability of seeing some number, call it x since we don’t particularly care what it is, of successes out of some larger number, call it N because that’s a convenient number, of trials, we need to figure out how many ways there are to arrange x successes out of N trials. For small x and N values we can figure this out by hand, given time. For large numbers, we’d never finish if we tried by hand. But we can solve it, if we attack the problem methodically.

Continue reading “Off By A Factor Of 720 (Or More)”

From Drew Carey To An Imaginary Baseball Player


So, we calculated that on any given episode of The Price Is Right there’s around one chance of all six winners of the Item Up For Bid coming from the same seat. And we know there have been about six thousand episodes with six Items Up For Bid. So we expect there to have been about six clean sweep episodes; yet if Drew Carey is to be believed, there has been just the one. What’s wrong?

Possibly, nothing. Just because there is a certain probability of a thing happening does not mean it happens all that often. Consider an analogous situation: a baseball batter might hit safely one time out of every three at-bats; but there would be nothing particularly odd in the batter going hitless in four at-bats during a single game, however much we would expect him to get at least one. There wouldn’t be much very peculiar in his hitting all four times, either. Our expected value, the number of times something could happen times the probability of it happening each time, is not necessarily what we actually see. (We might get suspicious if we always saw the expected value turn up.)

Still, there must be some limits. We might accept a batter who hits one time out of every three getting no hits in four at-bats. If he got no runs in four hundred at-bats, we’d be inclined to say he’s not a decent hitter having some bad luck. More likely he’s failing to bring the bat with him to the plate. We need a tool to say whether some particular outcome is tolerably likely or so improbable that something must be up.

Continue reading “From Drew Carey To An Imaginary Baseball Player”

%d bloggers like this: