I hate to make it sound like I’m running out of things to say about mathematical comics. But the most recent bunch of strips have been reruns, as with Bill Amend’s FoxTrot or Tom Toles’s Randolph Itch, 2 am. And there’s some figurative reruns too, as a couple of things I’ve talked about before come around again. Also I’m not sure but I think I might have used this Edition Title before. It feels like one I might have. I hope you’ll enjoy anyway, please.
Bill Amend’s FoxTrot Classics for the 15th of October, originally run in 2004, is about binary numerals. It’s built on the fact the numeral ‘100’ represents a rather smaller number in base-two arithmetic than it does in base-ten. This is the sort of thing that’s funny to a mathematically-inclined nerd, such as Jason here. It’s the numerical equivalent of a pun, playing on how if you pretend something is in a different context, it would have a different meaning.
Dave Blazek’s Loose Parts for the 15th of October puts a shape other than a triangle into the orchestra pit. I’m amused, and it puts me in mind of the classic question, “Can One Hear The Shape Of A Drum?” The answer is tricky.
Bob Scott’s Molly and the Bear for the 15th of October is a Pi Day joke. I don’t believe it’s a rerun, but the engagingly-drawn strip is in reruns terribly often.
Tom Toles’s Randolph Itch, 2 am for the 15th of October is a rerun, not just from 1999 but from earlier this year. I don’t know if the strip is being run out of order or if the strip ran a shorter time than I thought. Anyway, it’s still a funny drawing and “r” doesn’t figure into it at all.

Rick Detorie’s One Big Happy for the 16th of October shows Ruthie teaching her stuffed dolls about the number 1. Ruthie is a bit confused about the difference between the number one and the numeral, the way we represent the number. That’s common enough.
She does kind of have a point, though. The number one gets represented as a vertical stroke in the Arabic numerals we commonly use; also in Roman numerals used in making dates harder to read; also in Ancient Egyptian numerals; also in Chinese numerals. One almost suspects everyone is copying each other, or just started off with a tally mark and kept with it. Things get more complicated around ‘three’ or ‘four’. But it isn’t really universal, of course. The Mayans used a single dot, which is admittedly pretty close as a scheme. The Babylonians used a vertical wedge, a little triangle atop a stem that was presumably easy to carve with the tools available.
Ruben Bolling’s Super-Fun-Pak Comix for the 16th of October reprings a Chaos Butterfly installment. And the reminder that a system can be deterministic yet unpredictable sets me up for …
The rerun of Tom Toles’s Randolph Itch, 2 am that appeared on the 17th. The page of horoscopes saying “what happens to you today will be random, based on laws of probability” is funny, although, “random”? There is, it appears, randomness deeply encoded in the universe. There seems to be no way that atoms and molecules could work if they could not be random. But randomness follows laws. Those laws are so fundamental, and imply averages so relentlessly, that they create a human-scale world which might as well be deterministic. (I am deliberately bundling up the question of whether beings have free will and putting it off to the corner, in a little box, where I will not bother it.) In principle, we should be able to predict the day; we just need enough information, and time to compute.
Of course in practice we can’t, and can’t even come close. We may be able to predict the broad strokes of the day, but it is filled with the unpredictable. We call that random, but that is really a confession of ignorance. It’s much the way we might say there is a “probability” of one in seven that you were born on a Tuesday. There’s no such thing. The probability is either 1, because you were born on a Tuesday, or 0, because you were not. What day any given date in the Julian or Gregorian calendar occurred is a determined thing. What we mean by “a probability of one in seven” is that we are ignorant of your birthday, or have not done the work of finding out what day of the week that was. Thus the day of the week appears random.
John Graziano’s Ripley’s Believe It or Not for the 17th of October claims that Les Stewart wrote out “every number from one to one million in words’, using seven typewriters, in a project that took sixteen years and seven months. Sixteen years and seven months is something close to half a billion seconds. So if we take this, he was averaging about fifty seconds to write out each number. This sounds unimpressive, but after all, he had to take some time to sleep and probably had other projects to work on as well. Perhaps he was also working on putting the numbers in alphabetical order.