Reading the Comics, March 9, 2019: In Which I Explain Eleven Edition


I thought I had a flood of mathematically-themed comic strips last week. On reflection, many of them were slight enough not to need further context. You’ll see in the paragraph of not-discussed strips at the end of this. What did rate discussion turned out to get more interesting to me the more I wrote about them.

Stephen Beals’s Adult Children for the 6th uses mathematics as icon of things that are indisputably true. Two plus two equals four is a good example of such. If we take the ordinary meanings of ‘two’ and ‘plus’ and ‘equals’ and ‘four’ there’s no disputing it. The result follows from some uncontroversial-seeming axioms and a lot of deduction. By the rules of logic, the conclusion has to be true, whoever makes it. Even, for that matter, if nobody makes it. It’s difficult to imagine a universe in which nobody ever notices two plus two equals four. But we can imagine that there are mathematical truths that will never be noticed by anyone. (Here’s one. There is some largest finite whole number that any human-created project will ever use in any context. Consider the equation represented by “that number plus two equals (even bigger number)”.)

Harvey: 'Everyone ignores facts! Two plus two equals four, you know what I mean?' Friend: 'Yes. In your opinion, two plus two equals four.' Harvey: 'Noooo! Facts aren't opinions! There are no true facts, fake facts, iffy facts ... just facts! Let's judge things based on the facts!' Friend: 'And how do these facts make you feel?' Harvey, clutching his chest. 'Like you're giving me a fact attack.'
Stephen Beals’s Adult Children for the 6th of March, 2019. Essays inspired by something mentioned in Adult Children appear at this link.

But you see cards palmed there. What do we mean by ‘two’? Have we got a good definition? Might there be a different definition that’s more useful? Probably not, for ‘two’ anyway. But a part of mathematics, especially as a field develops, is working out what are the important concepts, and what their definitions should be. What a ‘function’ is, for example, went through a lot of debate and change over the 19th century. There is an elusiveness to facts, even in mathematics, where you’d think epistemology would be simpler.

Lauren's problem: '(x^2 y - 3y^2 + 5xy^2) - (-x^2 y + 3xy^2 - 3y^2). Which of the following is equivalent to the expression above? a. 4x^2 y^2. b. 8xy^2 - 6y^2. c. 2x^2 + 2xy^2. d. 2x^2 y + 8xy^2 - 6y^2.' Next problem: 'If a/b = 2 what's the value of 4b/a? a. 0. b. 1. c. 2. d. 4.' Bob, holding up empty ice trays: 'If a and b are empty because Lauren is selfish and not thinking of Bob, what are the chances he gets to have an iced drink? a. slim, b. none, c. all of the above?'
Frank Page’s Bob the Squirrel for the 6th of March, 2019. When I’m moved to write something based on Bob the Squirrel the essays should be tagged to appear at this link.

Frank Page’s Bob the Squirrel for the 6th continues the SAT prep questions from earlier in the week. There’s two more problems in shuffling around algebraic expressions here. The first one, problem 5, is probably easiest to do by eliminating wrong answers. (x^2 y - 3y^2 + 5xy^2) - (-x^2 y + 3xy^2 - 3y^2) is a tedious mess. But look at just the x^2 y terms: they have to add up to 2x^2 y , so, the answer has to be either c or d. So next look at the 3y^2 terms and oh, that’s nice. They add up to zero. The answer has to be c. If you feel like checking the 5xy^2 terms, go ahead; that’ll offer some reassurance, if you do the addition correctly.

The second one, problem 8, is probably easier to just think out. If \frac{a}{b} = 2 then there’s a lot of places to go. What stands out to me is that 4\frac{b}{a} has the reciprocal of \frac{a}{b} in it. So, the reciprocal of \frac{a}{b} has to equal the reciprocal of 2 . So \frac{a}{b} = \frac{1}{2} . And 4\frac{b}{a} is, well, four times \frac{b}{a} , so, four times one-half, or two. There’s other ways to go about this. In honestly, what I did when I looked at the problem was multiply both sides of \frac{a}{b} = 2 by \frac{b}{a} . But it’s harder to explain why that struck me as an obviously right thing to do. It’s got shortcuts I grew into from being comfortable with the more methodical approach. Someone who does a lot of problems like these will discover shortcuts.

Ruthie on the phone: 'Hello, homework hotline? I have an arithmetic question. Why isn't eleven called oneteen, and twelve called twoteen? ... You don't know? ... May I speak to your supervisor, please?'
Rick Detorie’s One Big Happy for the 6th of March, 2019. This particular strip is several years old, but I can’t pin down its original run more precisely than that. Essays featuring One Big Happy should be at this link.

Rick Detorie’s One Big Happy for the 6th asks one of those questions you need to be a genius or a child to ponder. Why don’t the numbers eleven and twelve follow the pattern of the other teens, or for that matter of twenty-one and thirty-two, and the like? And the short answer is that they kind of do. At least, “eleven” and “twelve”, etymologists agree, derive from the Proto-Germanic “ainlif” and “twalif”. If you squint your mouth you can get from “ain” to “one” (it’s probably easier if you go through the German “ein” along the way). Getting from “twa” to “two” is less hard. If my understanding is correct, etymologists aren’t fully agreed on the “lif” part. But they are settled on it means the part above ten. Like, “ainlif” would be “one left above ten”. So it parses as one-and-ten, putting it in form with the old London-English preference for one-and-twenty or two-and-thirty as word constructions.

It’s not hard to figure how “twalif” might over centuries mutate to “twelve”. We could ask why “thirteen” didn’t stay something more Old Germanic. My suspicion is that it amounts to just, well, it worked out like that. It worked out the same way in German, which switches to “-zehn” endings from 13 on. Lithuanian has all the teens end with “-lika”; Polish, similarly, but with “-ście”. Spanish — not a Germanic language — has “custom” words for the numbers up to 15, and then switches to “diecis-” as a prefix to the numbers 6 through 9. French doesn’t switch to a systematic pattern until 17. (And no I am not going to talk about France’s 80s and 90s.) My supposition is that different peoples came to different conclusions about whether they needed ten, or twelve, or fifteen, or sixteen, unique names for numbers before they had to resort to systemic names.

Here’s some more discussion of the teens, though, including some exploration of the controversy and links to other explanations.

Caption: '4 out of 5 Doctors agree ... ' Four, of five, chickens dressed as doctors: 'We are 80% of the doctors!'
Doug Savage’s Savage Chickens for the 6th of March, 2019. And the occasional essay based on Savage Chickens should be gathered at this link.

Doug Savage’s Savage Chickens for the 6th is a percentages comic. It makes reference to an old series of (American, at least) advertisements in which four out of five dentists would agree that chewing sugarless gum is a good thing. Shifting the four-out-of-five into 80% riffs is not just fun with tautologies. Percentages have this connotation of technical precision; 80% sounds like a more rigorously known number than “four out of five”. It doesn’t sound as scientific as “0.80”, quite. But when applied to populations a percentage seems less bizarre than a decimal.


Oh, now, and what about comic strips I can’t think of anything much to write about?
Ruben Bolling’s Super-Fun-Pak Comix for the 4th featured divisibility, in a panel titled “Fun Facts for the Obsessive-Compulsive”. Olivia James’s Nancy on the 6th was avoiding mathematics homework. Jonathan Mahood’s Bleeker: The Rechargeable Dog for the 7th has Skip avoiding studying for his mathematics test. Bob Scott’s Bear With Me for the 7th has Molly mourning a bad result on her mathematics test. (The comic strip was formerly known as Molly And The Bear, if this seems familiar but the name seems wrong.) These are all different comic strips, I swear. Bill Holbrook’s Kevin and Kell for the 8th has Rudy and Fiona in mathematics class. (The strip originally ran in 2013; Comics Kingdom has started running Holbrook’s web comic, but at several years’ remove.) And, finally, Alex Hallatt’s Human Cull for the 8th talks about “110%” as a phrase. I don’t mind the phrase, but the comic strip has a harder premise.


And that finishes the comic strips from last week. But Pi Day is coming. I’ll be ready for it. Shall see you there.

Reading the Comics, March 6, 2019: Fix This Joke Edition


This week had a pretty good crop. I think Comic Strip Master Command is warming its people up for Pi Day. Better, there’s one that’s a good open-ended topic. We’ll get there.

Bill Amend’s FoxTrot for the 3rd (not a rerun) has Jason trying to teach his pet iguana algebra. Animals have some number sense, certainly. It depends on the animal. But we do see evidence of animals that can count, and that understand some geometrical truths. The level of abstraction needed for algebra — to discuss numbers when we don’t know, or don’t care, about their value — seems likely beyond what we could expect from animals. I say this aware that the last fifty years of animal cognition research have been, mostly, “yeah, so remember how we all agreed only humans could do this thing? Well, we looked at some nutrias here and … ”

Peter: 'Whatcha doing?' Jason: 'Teaching Quincy algebra.' Peter: 'Isn't that a little advanced for an iguana?' Jason: 'I tried teaching him simpler math like addition and subtraction, but he wouldn't stop yawning. I'm taking that as a sign he needed something more challenging to engage in. 'Chapter seven: Quadratic Equations'.' (Quincy falls asleep.) Peter: 'Well, he's not yawning.' Jason: 'Maybe I should just jump right to calculus.'
Bill Amend’s FoxTrot for the 3rd of March, 2019. Essays that discuss FoxTrot, both old and current vintage, are at this link.

Jason’s diagnosis that Quincy needs something more challenging is fair enough though. Teaching needs a couple of elements to succeed. The student’s confidence that this is worth the attention is one of them. A lot of teaching focuses on things that are, yes, beyond what the student now knows. But that the student can work out without feeling too lost. Feeling a bit lost helps. But there is great motivation in the moment when you feel less lost. Setting up such moments is among the things skilled teachers do.

(And I say “among”. There can be great joy in teaching a topic someone already knows, if what you’re really doing is showing some new perspective on it. And teaching things someone already knows is a good way to reassure that they have got it. Nothing is ever just the one thing.)

'Disc-o-Magic'. It's a ring of ten magician names, linked clockwise, and an inner ring of five magician names. Starting from any of the outer ring and going clockwise a number of times equal to the number of letters in the magician's name (eg, so, 'Houdini' would move clockwise seven spaces), then insite and repeating this counterclockwise the number of letters in *that* magician's name lands you to 'a new name that is (arguably) the name of the world's greatest magician!'
Mac King and Bill King’s Magic in a Minute for the 3rd of March, 2019. Arithmetic-based tricks from Magic in a Minute get listed at this link.

Mac King and Bill King’s Magic in a Minute for the 3rd is a variation of a trick from mid-January and mentioned here. It is, like many mathematics problems on a clock face, or a clock-like face, a modular numbers game in disguise. The trick is to give every starting, blue, bubble a path that ends at the same spot. There are tricks to get there, hidden in the network. For example, the first step is to start at any magician’s name in the outer ring, and move clockwise a number of steps equal to the number of letters in their name. All right: where would you start to finish on ‘Roy’ or ‘Thurston’? Given the levels of work needed for this I find it more impressive than I do January’s clock trick.

Frank Page’s Bob the Squirrel for the 4th sees Lauren working on a multiple-choice mathematics question. (It’s SAT prep work.) She’s startled that Bob can spot the answer right away. But there’s reasons it’s not so shocking Bob would be so fast.

Lauren's SAT prep question: if f(x) = 2x^2 + 4 for all real numbers x which of the following is equal to f(3) + f(5)? a. f(4). b. f(6). c. f(10). d. f(15). Bob comes up. Lauren: 'I'm *studying*, Bob. Don't bother me.' Bob: 'The answer is B.' Lauren: 'Wow ... that's the correct ... answer?' Bob: 'WHY do you gotta say it with all the dots and pauses like that?'
Frank Page’s Bob the Squirrel for the 4th of March, 2019. The occasional essay inspired by Bob The Squirrel is at this link.

The first thing I notice in this problem is f(x). For positive values of x this is an “increasing” function. That is, if you have two positive numbers x and y, and x is less than y, then f(x) is less than f(y). You can see that from how x^2 is an increasing function. Multiply an increasing function by a positive number and it stays increasing. Add a constant to an increasing function and it stays increasing. So this right away rules out f(4) as a possible answer. If Lauren guessed wildly at this point, she’d have a one-in-three chance of getting it right. If the SAT still scores by the rules in place when I took it, that’s a chance worth taking.

That x^2 is another tip. This value grows, and pretty fast. It grows even faster the bigger x gets. The difference between f(10) and f(11) is 42. The difference between f(11) and f(12) is 46. The difference between f(12) and f(13) is 50. So just from that alone it’s hard to imagine f(15) being the right answer. Easier to imagine f(10) being right. Less hard to imagine f(6) being right. If I had to guess, f(6) would be it. If I must know which is right? I’d start by calculating f(5) and f(6). Then check their difference. If that seems close to what f(3) must be, good, call it done. If that didn’t work I’d move reluctantly on to calculating f(10). But, bleah. Seems tedious. I’m glad to be past having to work that out.

Woman, to the man with her, as they see someone approaching the corner of the city street: 'It's that Fibonacci dude. His conversations are never-ending.'
S Camilleri Konar’s Six Chix for the 6th of March, 2019. Essays inspired by something mentioned in Six Chix, whichever cartoonist created it, are at this link.

S Camilleri Konar’s Six Chix for the 6th name-drops Fibonacci. This fellow is Leonardo of Pisa, who lived from around 1175 to around 1240 or so. He’s famous for — well, a bunch of things. One is his book explaining Arabic numerals to Western Europe and why they’re really better for so much calculation work. But another is what we now call the Fibonacci Sequence. We now call him Fibonacci, although that name’s a 19th century retronym. He belonged to the Bonacci family (‘Fibonacci’ would mean ‘child of Bonacci’) and, at least sometimes, called himself Leonardo Bigollo. Bigollo here meaning a traveller or a good-for-nothing.

His sequence is famous; it starts 1, 1, 2, 3, 5, 8, and so on, with each term in the sequence being the sum of the two terms before it. He was using this as a toy problem about breeding rabbits, meant to demonstrate ways to calculate better. This toy problem turns up in surprising contexts. Sometimes in algorithms. Sometimes in growth of natural objects; plant leaves and genes moving around on chromosomes and such. Sometimes in number theory. It’s even got links to the Golden Ratio, if we count that as interesting mathematics. And it inspires an activity problem. Per John Golden, a friend on Twitter:

The joke is all right as it is. The thing someone might associate with the name Fibonacci is the sequence, and it’s true that one never ends. But never ending isn’t a particularly distinctive feature of the Fibonacci sequence. Can the joke be rewritten so that the mathematics referenced is important?

There’s several properties of the sequence that might be useful. One is the thing that defined the sequence. Each term in it is the sum of the two preceding terms. The Golden Ratio offers another. Take any term in the sequence. The next term in the sequence is, approximately, the golden ratio of 1.618(etc) times the current term. The approximation gets better and better the more terms you go on.

That’s … really probably all you can expect to work with. There are fascinating other properties but you have to be really into number theory to know them. A positive number x is a Fibonacci number if and only if either 5x^2 + 4 or 5x^2 - 4 , or both, are perfect squares, for example. 1, 8, and 144 are the only Fibonacci numbers that are perfect powers of a whole number. Any Fibonacci number besides 1, 2, and 3 is the largest number of a Pythagorean triplet. Building a joke on any of these facts aims it at a particularly narrow audience.

If you feel the essential part of the joke is “this thing is never-ending” rather than “this involves Fibonacci” you have other options. How you might rewrite the joke depends on what you think the joke is.

And to speak of rewriting the joke is not to say Konar was wrong to make the joke she did, of course. We all understood what was being referenced and why it made for a punch line. Rewriting the joke to more tightly use its mathematical content does not necessarily make it funnier. This is especially so if a rewrite makes the joke too inaccessible. A comic strip is an optimization problem of how to compose a funny idea and to express it to a broad audience quickly. And then you have to solve it again.


That’s far from the full set of mathematics comics this past week. I’ll have another posting about them here soon enough. And yes, I know what Thursday is, too.

Reading the Comics, February 20, 2018: Bob the Squirrel Edition


So one comic strip was technically on point all this week, without ever quite giving me a specific thing to talk about. And I came to conclude there was another comic strip I could drop from my consideration. Which all were they? Read on.

Frank Page’s Bob the Squirrel for the 18th of February isn’t really about the Rubik’s Cube. It’s just something to occupy Bob’s mind until a deeper mystery emerges. Rubik’s Cubes, meanwhile, are everyone’s favorite group theory pastime, although I’m not sure how many people have learned group theory starting from that point. Where flies come from in the middle of winter I don’t know. We’ve been dealing with box elder bugs ourselves. (We’ve been scooping them up and tossing them outside where they can hopefully find the trees they should be using instead.)

Bob the Squirrel went on, during the week, to start a sequence about Lauren needing a geometry tutor. The story hasn’t done much that geometry-specific — Saturday’s was the most approximately on point — but it’s a comic strip I like. Squirrel fans might agree. (The strip for the 22nd has most tickled me.)

Allison Barrows’s PreTeena rerun for the 19th has a student teacher starting off her experience with a story problem. Your classic time-estimation problem.

Jack Pullan’s Boomerangs rerun for the 20th is one that mentions entropy and that I’ve already talked about at least twice before. These were times in January 2017 and also in November 2013. Given that the strip’s no longer in production and that I’m clearly on at least my third go-round I suppose I’ll retire it from my daily read. I’m curious why, if it was about 14 months between the last appearance and this appearance of this strip, why I didn’t have it at all in 2015 or 2016. Maybe I missed it, or it came a week there was enough to write about that I didn’t need to include a marginal strip.

Christopher Grady’s Lunarbaboon for the 20th is intended to be a heartwarming little story of encouragement and warm feelings. (Most Lunarbaboon strips are intended to be a heartwarming little story of encouragement and warm feelings.) That it’s mathematics the kid struggles with is incidental to the story setup. But it does make it easy to picture a kid struggling and a couple kind words offering some motivation, or at least better feelings.

Richard Thompson’s Richard’s Poor Almanac for the 20th is a casual mention of sudoku and a publication error that would supposedly have made it impossible. If the numbers were transposed consistently — everything that ought to have been a ‘2’ printed as a ‘5’, and everything that ought to have been ‘5’ printed as ‘2’ — the problem would be exactly as solvable. This is why you can sometimes see sudoku-type puzzles that use symbols or letters or other characters. But if, say, the third and the second rows were transposed then there’s a chance the incorrect puzzle would be solvable. Transposing a bunch of squares, like, the top three rows with the bottom three rows, wouldn’t make the puzzle unsolvable. This serves as a reminder that if you make enough mistakes you can still turn out all right, a comforting message for our times. Also I know I’ve featured Richard’s Poor Almanac several times over, but I’m a Richard Thompson fan so I’m not dropping that from my feed.

Will Henry’s Wallace the Brave — to be newspaper-syndicated from the 26th of March, by the way, and I’m glad for that as Wallace and I share the same favorite pinball game — just mentions mathematics as a subject Wallace isn’t thinking enough about. I’m also fond of the Loch Ness Monster, so, all the better.

I’m not surprised that this seems to be the first time I’ve had Lunarbabboon tagged. I am surprised that Bob the Squirrel seems not to have been tagged here before. Maybe I didn’t give the tag suggested-completion enough time to figure out what to do with ‘bob the’. We’ve been having odd little net glitches that mostly pass quickly, but that kill any sort of client-side Javascript-based page rendering. You know, like every web page does anymore because somehow “the web server puts together a bunch of stuff and transmits that to the reader” is too inefficient a system.