Reading the Comics, February 16, 2019: The Rest And The Rejects


I’d promised on Sunday the remainder of last week’s mathematically-themed comic strips. I got busy with house chores yesterday and failed to post on time. That’s why this is late. It’s only a couple of comics here, but it does include my list of strips that I didn’t think were on-topic enough. You might like them, or be able to use them, yourself, though.

Niklas Eriksson’s Carpe Diem for the 14th depicts a kid enthusiastic about the abilities of mathematics to uncover truths. Suppressed truths, in this case. Well, it’s not as if mathematics hasn’t been put to the service of conspiracy theories before. Mathematics holds a great promise of truth. Answers calculated correctly are, after all, universally true. They can also offer a hypnotizing precision, with all the digits past the decimal point that anyone could want. But one catch among many is whether your calculations are about anything relevant to what you want to know. Another is whether the calculations were done correctly. It’s easy to make a mistake. If one thinks one has found exciting results it’s hard to imagine even looking for one.

Kid addressing the class: 'Science is important because without math, for instance, we couldn't have calculated the shadows on the images from the Moon landing and realized it was all a big fake.'
Niklas Eriksson’s Carpe Diem for the 14th of February, 2019. Essays expanding on something mentioned in Carpe Diem should be at this link.

You can’t use shadow analysis to prove the Moon landings fake. But the analysis of shadows can be good mathematics. It can locate things in space and in time. This is a kind of “inverse problem”: given this observable result, what combinations of light and shadow and position would have caused that? And there is a related problem. Johannes Vermeer produced many paintings with awesome, photorealistic detail. One hypothesis for how he achieved this skill is that he used optical tools, including a camera obscura and appropriate curved mirrors. So, is it possible to use the objects shown in perspective in his paintings to project where the original objects had to be, and where the painter had to be, to see them? We can calculate this, at least. I am not well enough versed in art history to say whether we have compelling answers.

Wilberforce: 'Ever since we watched Super Bowl LIII, I've been wondering. Is there anything else they use Roman numerals for?' Hattie: 'They're reserved for the most important, history-altering events, like Super Bowls and World Wars!'
Art Sansom and Chip Sansom’s The Born Loser for the 16th of February, 2019. I had thought this might be a new tag, but, no. Born Loser comics get discussed at this link.

Art Sansom and Chip Sansom’s The Born Loser for the 16th is the rare Roman Numerals joke strip that isn’t anthropomorphizing the numerals. Or a play on how the numerals used are also letters. But yeah, there’s not much use for them that isn’t decorative. Hindu-Arabic numerals have great advantages in compactness, and multiplication and division, and handling fractions of a whole number. And handling big numbers. Roman numerals are probably about as good for adding or subtracting small numbers, but that’s not enough of what we do anymore.


And past that there were three comic strips that had some mathematics element. But they were slight ones, and I didn’t feel I could write about them at length. Might like them anyway. Gordon Bess’s Redeye for the 10th of February, and originally run the 24th of September, 1972, has the start of a word problem as example of Pokey’s homework. Mark Litzler’s Joe Vanilla for the 11th has a couple scientist-types standing in front of a board with some mathematics symbols. The symbols don’t quite parse, to me, but they look close to it. Like, the line about l(\omega) = \int_{-\infty}^{\infty} l(x) e is close to what one would write for the Fourier transformation of the function named l. It would need to be more like L(\omega) = \int_{-\infty}^{\infty} l(x) e^{\imath \omega x} dx and even then it wouldn’t be quite done. So I guess Litzler used some actual reference but only copied as much as worked for the composition. (Which is not a problem, of course. The mathematics has no role in this strip beyond its visual appeal, so only the part that looks good needs to be there.) The Fourier transform’s a commonly-used trick; among many things, it lets us replace differential equations (hard, but instructive, and everywhere) with polynomials (comfortable and familiar and well-understood). Finally among the not-quite-comment-worthy is Pascal Wyse and Joe Berger’s Berger And Wyse for the 12th, showing off a Venn Diagram for its joke.


Next Sunday should be a fresh Reading the Comics post, which like all its kind, should appear at this link.

Advertisements

Reading the Comics, January 1, 2019: New Year’s Day Edition


It’s a new year. That doesn’t mean I’m not going to keep up some of my old habits. One of them is reading the comics for the mathematics bits. For example …

Johnny Hart’s Back To BC for the 30th presents some curious use of mathematics. At least the grammar of mathematics. It’s a bunch of statements that are supposed to, taken together, overload … I’m going to say BC’s … brain. (I’m shaky on which of the characters is Peter and which is BC. Their difference in hair isn’t much of a visual hook.) Certainly mathematics inspires that feeling that one’s overloaded one’s brain. The long strings of reasoning and (ideally) precise definitions are hard to consider. And the proofs mathematicians find the most fun are, often, built cleverly. That is, going about their business demonstrating things that don’t seem relevant, and at the end tying them together. It’s hard to think.

Peter: 'The sum of the four sides of an isosceles triangle is equal to the ... ' BC, thinking: 'Four?' Peter: 'Hypotenuse of a rectangular circle ... ' BC, thinking: 'A rectangular circle?' Peter: 'Having a mean radius of x divided by alpha centura ... ' BC, thinking: 'Having.' SNAP! (He rubs his head.) BC: 'I think that must have been my mind.'
Johnny Hart’s Back To BC for the 30th of December, 2018. The strip says it’s from the 18th of February, 1962. Essays inspired by B.C., both 1962 vintage and 2019 current, should be at this link.

But then … Peter … isn’t giving a real mathematical argument. He’s giving nonsense. And obvious nonsense, rather than nonsense because the writer wanted something that sounded complicated without caring what was said. Talking about a “four-sided triangle” or a “rectangular circle” has to be Peter trying to mess with BC’s head. Confidently-spoken nonsense can sound as if it’s deeper wisdom than the listener has. Which, fair enough: how can you tell whether an argument is nonsense or just cleverer than you are? Consider the kind of mathematics proof I mentioned above, where the structure might almost be a shaggy dog joke. If you can’t follow the logic, is it because the argument is wrong or because you haven’t worked out why it is right?

I believe that … Peter … is just giving nonsense and trusting that … BC … won’t know the difference, but will wear himself out trying to understand. Pranks.

Doctor: 'I'm not an accountant. I'm your doctor. However, by trying to do your taxes by yourself, I've calculated your brain has depreciated by nearly 68%.'
Tim Lachowski’s Get A Life for the 31st of December, 2018. Essays discussing things raised by Get A Life should be at this link.

Tim Lachowski’s Get A Life for the 31st just has some talk about percentages and depreciation and such. It’s meant to be funny that we might think of a brain depreciating, as if anatomy could use the same language as finance. Still, one of the virtues of statistics is the ability to understand a complicated reality with some manageable set of numbers. If we accept the convention that some number can represent the value of a business, why not the convention that some number could represent the health of a brain? So, it’s silly, but I can imagine a non-silly framing for it.

Trout: 'Two thousand and nineteen years, that's a long time.' Agnes: 'Yep! Earth has been around a while!' Trout: 'Were people even alive back then?' Agnes: 'Someone had to start counting, so I guess so, yeah.' Trout: 'Who taught them to count?' Agnes: 'Probably the people selling calendars.'
Tony Cochran’s Agnes for the 1st of January, 2019. This and other essays discussing Agnes should be at this link.

Tony Cochran’s Agnes for the 1st is about calendars. The history of calendars is tied up with mathematics in deep and sometimes peculiar ways. One might imagine that a simple ever-increasing index from some convenient reference starting time would do. And somehow that doesn’t. Also, the deeper you go into calendars the more you wonder if anyone involved in the project knew how to count. If you ever need to feel your head snapping, try following closely just how the ancient Roman calendar worked. Especially from the era when they would occasionally just drop an extra month in to the late-middle of February.

The Julian and Gregorian calendars have a year number that got assigned proleptically, that is, with the year 1 given to a set of dates that nobody present at the time called the year 1. Which seems fair enough; not many people in the year 1 had any idea that something noteworthy was under way. Calendar epochs dated to more clear events, like the reign of a new emperor or the revolution that took care of that whole emperor problem, will more reliably start with people aware of the new numbers. Proleptic dating has some neat side effects, though. If you ever need to not impress someone, you can point out that the dates from the 1st of March, 200 to the 28th of February, 300 both the Julian and the Gregorian calendar dates exactly matched.

Dad: 'OK, Suzie, you hate math. And actually, 1/37 of me understands exactly how you feel.' Suzie: 'Lay off, Dad.'
Niklas Eriksson’s Carpe Diem for the 2nd of January, 2019. And appearances by Carpe Diem in my essays should be at this link.

Niklas Eriksson’s Carpe Diem for the 2nd is a dad joke about mathematics. And uses fractions as emblematic of mathematics, fairly enough. Introducing them and working with them are the sorts of thing that frustrate and confuse. I notice also the appearance of “37” here. Christopher Miller’s fascinating American Cornball: A Laffopedic Guide to the Formerly Funny identifies 37 as the current “funniest number”, displacing the early 20th century’s preferred 23 (as in skidoo). Among other things, odd numbers have a connotation of seeming more random than even numbers; ask someone to pick a whole number from 1 to 50 and you’ll see 37’s and 33’s more than you’ll see, oh, 48’s. Why? Good question. It’s among the mysteries of psychology. There’s likely no really deep reason. Maybe a sense that odd numbers are, well, odd as in peculiar, and that a bunch of peculiarities will be funny. Now let’s watch the next decade make a food of me and decide the funniest number is 64.


I’m glad to be back on schedule publishing Reading the Comics posts. I should have another one this week. It’ll be at this link when it’s ready. Thanks for reading.

Reading the Comics, October 24, 2018: Frazz Really Wants To Be My Friend Edition


It’s another week with several on-topic installments of Frazz. Again, Jef Mallet, you and I live in the same metro area. Wave to me at the farmer’s market or something. I’m kind of able to talk to people in real life, if I can keep in view three different paths to escape and know two bathrooms to hide in. Horrock’s is great for that.

Jef Mallet’s Frazz for the 22nd is a bit of wordplay. It’s built on the association between “negative” and “wrong”. And the confusing fact that multiplying a negative number by a negative number results in a positive number. It sounds like a trick. Still, negative numbers are tricky. The name connotes something that’s gone a bit wrong. It took time to understand what they were and how they should work. This weird multiplication rule follows from that. If we don’t suppose this to be true, then we break other ideas we have about multiplication and comparative sizes and such. Mathematicians needed to get comfortable with negative numbers. For a long time, for example, mathematicians would treat x^2 - 4x + 4 = 0 and x^4 + 4x + 4 = 0 as different kinds of polynomials to solve. Today we see a -4 as no harder than a +4, now that we’re good at multiplying it out. And I have read, but have not seen explained, that there was uncertainty among the philosophers of mathematics about whether we should consider negative numbers, as a group, to be greater than or less than positive numbers. (I have reasons for thinking this a mighty interesting speculation.) There’s reasons to doubt them, is what I have to say.

Mrs Olsen: 'Any questions? Goody. Caulfield.' Caulfield: 'If a negative times a negative is a positive, how come two wrongs don't make a right?' [Later] Frazz: 'Maybe negative isn't the same as wrong.' Caulfield: 'You are not incorrect.'
Jef Mallet’s Frazz for the 22nd of October, 2018. Good thing to learn, really.

Bob Weber Jr and Jay Stephens’s Oh Brother for the 22nd reminds me of my childhood. At some point I was pairing up the counting numbers and the letters of the alphabet, and realized that the alphabet ended while the numbers did not. Something about that offended my young sense of justice. I’m not sure how, anymore. But that it was always possible to find a bigger number than whatever you thought was the biggest caught my imagination.

Bud: 'Lily! Lily! What's the biggest number?' Lily: 'It's the same as the number of times you bug me.' Bud: 'But that's an ongoing, never-ending number.' Lily: 'Exactly!' Bud: 'Thanks for explaining math in practical terms!'
Bob Weber Jr and Jay Stephens’s Oh Brother for the 22nd of October, 2018. This may be a rerun; I don’t know if the strip is still in original production.

There is, surely, a largest finite number that anybody will ever use for something, even if it’s just hyperbole. I’m curious what it will be. Surely we can’t have already used it. A number named Skewes’s Number was famous, for a while, as the largest number actually used in a proof of something. The fame came from Isaac Asimov writing an essay about the number, and why someone might care, and how hard it is just describing how big the number is in a comprehensible way. Wikipedia tells me this number’s far been exceeded by, among other things, something called Rayo’s Number. It’s “the smallest number bigger than any finite number named by an expression in the language of set theory with a googol symbols or less” (plus some technical points to keep you from cheating). Which, all right, but I’d like to know if we think the first digit is a 1, maybe a 2? Somehow I don’t demand that of Skewes, perhaps because I read that Asimov essay when I was at an impressionable age.

Caulfield: 'If a fraction divided by a fraction is just a fraction times a flipped fraction, what happens if you fish with a fly for flying fish?' Mrs Olsen: 'You can't wade that far out in the ocean.' [ Later ] Frazz: 'So, nothing.' Caulfield: 'I don't think you can divide a fraction by a fraction and get zero.'
Jef Mallet’s Frazz for the 23rd of October, 2018. I appreciate when Mrs Olsen is given the chance to show she does know things.

Jef Mallet’s Frazz for the 23rd has Caulfield talk about a fraction divided by a fraction. And particularly he says “a fraction divided by a fraction is just a fraction times a flipped fraction”. This offends me, somehow. This even though that is how I’d calculate the value of the division, if I needed to know that. But it seems to me like automatically going to that process skips recognizing that, say, \frac{2}{5} \div \frac{1}{10} shouldn’t be surprising if it turns out not to be a fraction. Well, Caulfield’s just looking to cause trouble with a string of wordplay. I can think of how to divide a fraction by a fraction and get zero.

One is really the only number there is! All other numbers are simply collections of ones.
Ashleigh Brilliant’s Pot-Shots for the 23rd of October, 2018. This is a rerun, but from 1977; the strip is not in regular production anymore.

Ashleigh Brilliant’s Pot-Shots for the 23rd promises to recapitulate the whole history of mathematics in a single panel. Ambitious bit of work. It’s easy to picture going from the idea of 1 to any of the positive whole numbers, though. It’s so easy it doesn’t even need humans to do it; animals can count, at least a bit. We just carry on to a greater extent than the crows or the raccoons do, so far as we’ve heard. From those, it takes some squinting, but you can think of negative whole numbers. And from that you get zero pretty quickly. You can also get rational numbers. The western mathematical tradition did this by looking at … er … ratios, that something might be to another thing as two is to five. Circumlocutions like that. Getting to irrational numbers is harder. Can be harder. Some irrational numbers beg you to notice them: the square root of two, for example. Square root of three. Numbers that come up from solving polynomial equations. But there are more number than those. Many more numbers. You might suspect the existence of a transcendental number, that isn’t the root of any polynomial that’s decently behaved. But finding one? Or finding that there are more transcendental number than there are real numbers? This takes a certain brilliance to suspect, and to prove out. But we can get there with rational numbers — which we get to from collections of ones — and the idea of cutting sets of numbers into those smaller than and those bigger than something. Ashleigh Brilliant has more truth than, perhaps, he realized when he drew this panel.

Goldfish, in a tank, to its peers: 'This may seem weird, but my research indicates that the universe has the shape of a perfect cuboid.
Niklas Eriksson’s Carpe Diem for the 24th of October, 2018. I’m curious how the ground is accounted for.

Niklas Eriksson’s Carpe Diem for the 24th has goldfish work out the shape of space. A goldfish in this case has the advantage of being able to go nearly everywhere in the space. But working out what the universe must look like, when you can only run local experiments, is a great geometric problem. It’s akin to working out that the Earth must be a sphere, and about how big a sphere, from the surveying job one can do without travelling more than a few hundred kilometers.


If you’re interested in reading the comics, you might want to see Reading the Comics posts. They’re here. More essays mentioning Frazz should be at this link. Essays that discuss ideas brought up by Oh Brother! should be this link. Essays which talk about Frazz — wait. I said that. This and other appearances by Pot Shots should be at this link. And posts which feature Carpe Diem should be at link. Do please stick around for more of my Fall 2018 Mathematics A-To-Z, too. I’m trying to keep up at two essays a week through the end of the year, which is not precisely fall.

Reading the Comics, April 2018: Another Normal Week Edition


And for another week running the pace of mathematically-themed comic strips has been near normal. There’s nowhere near enough to split the essay into two pieces, which is fine. There is some more work involved in including images for all the strips I discuss and this pace better fits the time I could make for writing this week. Will admit I’m scared of what’s going to happen when I have a busy week and Comic Strip Master Command orders more comics for me. I admit this isn’t an inspired name for the Edition. But the edition names are mostly there so people have a chance of telling whether they’ve read an installment before. The date alone doesn’t do it. A couple of words will. Maybe I should give up on meaningful names if there isn’t an obvious theme for the week. It’s got to be at least as good to name something “Coronet Blue Edition” as to name it “Lots Of Andertoons Edition”.

Frank Cho’s Liberty Meadows rerun for the 1st riffs on quantum computers. You’ve maybe seen much talk about them in pop science columns and blogs. They require a bunch of stuff that gets talked about as if it were magical. Quantum mechanics, obviously, the biggest bit of magic in popular science today. Complex-valued numbers, which make for much more convenient mathematical descriptions. Probability, which everyone thinks they understand and which it turns out nobody does. Vector spaces and linear algebra, which mathematics (and physics) majors get to know well. The mathematics of how a quantum computer computes is well-described as this sort of matrix and vector work. Quantum computing promises to be a really good way to do problems where the best available approach is grinding it out: testing every possibility and finding the best ones. No part of making a quantum computer is easy, though, so it’s hard to say when we’ll have the computing power to make a version of SimCity with naturally curving roads. (This is a new tag for my Reading the Comics essays, but I’ve surely featured the strip some before.)

Frank: 'What are you doing in my room?' Ralph, in spacesuit gear and in front of a swirling vortex of light: 'Your room as the best electrical outlet to power my quantum computer.' Frank: 'Quantum computer?' Ralph: 'You wouldn't understand.' Frank: 'Try me, monkey boy.' Ralph: 'All computers and electronic systems are based on the binary principle. They operate using two states, on and off. The quantum computer utilizes the fundamental nature of subatomic reality. Instead of operating in two states it operates on a multitude of states between on and off. It doesn't calculate serially like a binary computer. It performs operations simultaneously across each state, across each different reality, if you will. Each quantum state is another universe, another time. Since there are multiple quantum states, there are, theoretically, multiple universes coexisting side by side. This quantum computer makes teleportation and time travel possible.' [Awkward pause.] Frank: 'OK, uh, just don't mess with my Star Wars collection.' Ralph: 'I knew you wouldn't understand.' [Alley Oop pops in.]
Frank Cho’s Liberty Meadows rerun for the 1st of April, 2018. First, good cameo. Second, this rerun’s being from around 2000 means quantum computers have been fit subjects for newspaper jokes about two decades now, and I didn’t realize that. And yeah, in the penultimate panel Cho says ‘with apologies and respect to V T Hamlin. (Hamlin created Alley Oop, and you can read my thoughts about the current strip on this link.) Cartoonists always write ‘apologies to’ when they use another artist’s characters and I don’t know how the convention started. Certainly not for cameos like this where it’s not like Oop does something that could damage his character.

Niklas Eriksson’s Carpe Diem for the 2nd is a mathematics-education-these-days joke. The extremely small child talking about counting-without-a-calculator as a subject worth studying. People are always complaining that people don’t do arithmetic well enough in their heads. I understand the frustration, considering last week I stymied a cashier at a Penn Station by giving $22.11 for my $11.61 order. I don’t know why he put in my payment as $20; why not let the machine designed to do this work, do the work? He did fine working out that I should get $10 in bills back but muddled up the change. As annoyances go it ranks up there with the fast food cashier asking my name for the order and entering it as “Joeseph”.

Kid: 'Yup, 'counting without a calculator' is a subject in its own right these days.'
Niklas Eriksson’s Carpe Diem for the 2nd of April, 2018. I’m kind of distracted trying to work out the perspective between the kid and the adult. Either the kid’s standing pretty far away or is really tiny and is standing on a chair.

Lard’s World Peace Tips for the 4th mentions the Möbius Strip. It’s got to be the most famous exotic piece of geometry to have penetrated the popular culture. It’s also a good shape to introduce geometry students to a “non-orientable” surface. Non-orientable means about what you’d imagine. There’s not a way to put coordinates on it that don’t get weird. For example, try drawing an equator on the surface of the strip. Any curve along the surface that doesn’t run off the edges will do. The curve just has to meet itself. It looks like this divides the strip into two pieces. Fine, then; which of these two pieces is “north” and which is “south” of this equator? There’s not a way to do that. You get surprising results if you try.

Waiter: 'Here's one for you.' Lard: 'Yes?' Waiter: 'Why did the chicken cross the Mobius strip?' Lard: 'To get to the same side? At least that's what the chicken told me ... ' [ LATER ] The waiter is chasing the chicken along a Mobius strip: 'Come back here! You ruined my punchline!'
Lard’s World Peace Tips for the 4th of April, 2018. Until transcribing the strip for the alt-text here I didn’t realize it was a chicken, and not Lard, being chased in that final panel.

Karen Montague-Reyes’s Clear Blue Water rerun for the 5th has Eve deploying a mathematical formula. She’s trying to describe the way that perception of time changes over the course of events. It’s not a bad goal. Many things turn out to be mathematically describable. I don’t see what the equation is supposed to even mean, but then, I haven’t seen the model she developed that implies this equation. (This is not a new tag and I’m surprised by that.)

Eve: 'Remember when I told you I'd figured out how to slow down time?' Manny: '... by getting pregnant?' Eve: 'Exactly! Well, here it is. Eve's theory of pregativity! Ta-da!' Manny: 'Oh dear ... T = pt + 1y^2 - 0 ... Huh?' Eve: 'It explains time! How it slows down in pregnancy, then zooms to hyperspeed during baby's first year, resulting in a net gain of zero! I want a patent!' Manny: 'This makes NO sense whatsoever.' Eve: 'Well, not to a layman, no.'
Karen Montague-Reyes’s Clear Blue Water rerun for the 5th of April, 2018. I’m about 60% sure Eve is just describing Soap Opera Rapid Aging Syndrome here, which carries over to the comics. (Remember over in Rex Morgan, M.D. that June Morgan carried her latest child for like two years.)

Dan Thompson’s Brevity for the 6th is some mathematics wordplay, built on the abacus. I’m not sure there’s more to say about this, past that you can do much more on an abacus. You can, at least. I keep reading directions about how to multiply with it and then I look at mine and I feel helpless.

Chinese real-estate agent: 'In this room, you'll notice the lovely stone abacuses.' Potential homebuyer: 'We just love granite counters!'
Dan Thompson’s Brevity for the 6th of April, 2018. My father’s trained me to be skeptical of granite counters, although I don’t remember why. In any case in our kitchen we’re keeping the counter as is, to respect the history of a house that’s nine decades old this year and that we hope to be in when it reaches its centennial. And because we like ourselves too much to inflict countertop-replacement work on us.

Bil Keane and Jeff Keane’s Family Circus for the 7th is a kids-mispronouncing-a-mathematics-word strip. I have even less to say about this. It’s a normal week.

Dolly to her mother: 'I'm having trouble with eagles in school --- One plus one eagles two, two plus two eagles four'.
Bil Keane and Jeff Keane’s Family Circus for the 7th of April, 2018. This is probably a rerun; most Family Circus strips are these days. No idea when from exactly; most of the identifiable reruns have been from the 70s. Also, so far as this goes, she isn’t demonstrating problems with eaglity.

Reading the Comics, September 16, 2017: Wait, Are Elviney and Miss Prunelly The Same Character Week


It was an ordinary enough week when I realized I wasn’t sure about the name of the schoolmarm in Barney Google and Snuffy Smith. So I looked it up on Comics Kingdom’s official cast page for John Rose’s comic strip. And then I realized something about the Smiths’ next-door neighbor Elviney and Jughaid’s teacher Miss Prunelly:

Pictures of Elviney and Miss Prunelly from the Barney Google And Snuffy Smith cast page. They look almost the same, except for Elviney wearing smaller glasses and having something that isn't a pencil in her hair bun.
Excerpt from the cast page of Barney Google and Snuffy Smith. Among the many mysteries besides that apparently they’re the same character and I never noticed this before? Why does Spark Plug, the horse Google owns that’s appeared like three times this millennium and been the source of no punch lines since Truman was President, get listed ahead of Elviney and Miss Prunelly who, whatever else you can say about them, appear pretty much every week?

Are … are they the same character, just wearing different glasses? I’ve been reading this comic strip for like forty years and I’ve never noticed this before. I’ve also never heard any of you all joking about this, by the way, so I stand by my argument that if they’re prominent enough then, yes, glasses could be an adequate disguise for Superman. Anyway, I’m startled. (Are they sisters? Cousins? But wouldn’t that make mention on the cast page? There are missing pieces here.)

Mac King and Bill King’s Magic In A Minute feature for the 10th sneaks in here yet again with a magic trick based in arithmetic. Here, they use what’s got to be some Magic Square-based technology for a card trick. This probably could be put to use with other arrangements of numbers, but cards have the advantage of being stuff a magician is likely to have around and that are expected to do something weird.

Kid: 'I can't do this! I'll never be bale to figure out this stupid math homework!!!' Ollie the dog, thinking: 'Want me to eat it?' Caption: Ollie always dreamed of being a rescue dog.
Susan Camilleri Konair’s Six Chix for the 13th of September, 2017. It’s a small artistic touch, but I do appreciate that the kid is shown with a cell phone and it’s not any part of the joke that having computing devices is somehow wrong or that being on the Internet is somehow weird or awry.

Susan Camilleri Konair’s Six Chix for the 13th name-drops mathematics as the homework likely to be impossible doing. I think this is the first time Konair’s turned up in a Reading The Comics survey.

Thom Bluemel’s Birdbrains for the 13th is an Albert Einstein Needing Help panel. It’s got your blackboard full of symbols, not one of which is the famous E = mc2 equation. But given the setup it couldn’t feature that equation, not and be a correct joke.

Miss Prunelly: 'If Jughaid has twelve jelly beans an' he gives five of 'em to Mary Beth, how many does he have left?' Mary Beth: 'Prob'ly four, 'cuz he ain't all that good at counting'!''
John Rose’s Barney Google for the 14th of September, 2017. I admire Miss Prunelly’s commitment to ongoing professional development that she hasn’t run out of shocked or disapproving faces after all these years in a gag-a-day strip.

John Rose’s Barney Google for the 14th does a little more work than necessary for its subtraction-explained-with-candy joke. I non-sarcastically appreciate Rose’s dodging the obvious joke in favor of a guy-is-stupid joke.

Niklas Eriksson’s Carpe Diem for the 14th is a kind of lying-with-statistics joke. That’s as much as it needs to be. Still, thought always should go into exactly how one presents data, especially visually. There are connotations to things. Just inverting an axis is dangerous stuff, though. The convention of matching an increase in number to moving up on the graph is so ingrained that it should be avoided only for enormous cause.

At the hospital: 'We've inverted the Y-Axis so as not to worry the patient.'
Niklas Eriksson’s Carpe Diem for the 14th of September, 2017. It’s important the patient not panic thinking about how he’s completely flat under the blanket there.

This joke also seems conceptually close, to me, to the jokes about the strangeness of how a “negative” medical test is so often the good news.

Olivia Walch’s Imogen Quest for the 15th is not about solitaire. But “solving” a game by simulating many gameplays and drawing strategic advice from that is a classic numerical mathematics trick. Whether a game is fun once it’s been solved so is up to you. And often in actual play, for a game with many options at each step, it’s impossible without a computer to know the best possible move. You could use simulations like this to develop general guidelines, and a couple rules that often pan out.

Thaves’s Frank and Ernest for the 16th qualifies as the anthropomorphic-numerals joke for this week. I’m glad to have got one in.

Reading the Comics, August 9, 2017: Pets Doing Mathematics Edition


I had just enough comic strips to split this week’s mathematics comics review into two pieces. I like that. It feels so much to me like I have better readership when I have many days in a row with posting something, however slight. The A to Z is good for three days a week, and if comic strips can fill two of those other days then I get to enjoy a lot of regular publication days. … Though last week I accidentally set the Sunday comics post to appear on Monday, just before the A To Z post. I’m curious how that affected my readers. That nobody said anything is ominous.

Border collies are, as we know, highly intelligent. (Looking over a chalkboard diagramming 'fetch', with symbols.) 'There MUST be some point to it, but I guess we don't have the mathematical tools to crack it at the moment.'
Niklas Eriksson’s Carpe Diem for the 7th of August, 2017. I have to agree the border collies haven’t worked out the point of fetch. I also question whether they’ve worked out the simple ballistics of the tossed stick. If the variables mean what they suggest they mean, then dimensional analysis suggests they’ve got at least three fiascos going on here. Maybe they have an idiosyncratic use for variables like ‘v’.

Niklas Eriksson’s Carpe Diem for the 7th of August uses mathematics as the signifier for intelligence. I’m intrigued by how the joke goes a little different: while the border collies can work out the mechanics of a tossed stick, they haven’t figured out what the point of fetch is. But working out people’s motivations gets into realms of psychology and sociology and economics. There the mathematics might not be harder, but knowing that one is calculating a relevant thing is. (Eriksson’s making a running theme of the intelligence of border collies.)

Nicole Hollander’s Sylvia rerun for the 7th tosses off a mention that “we’re the first generation of girls who do math”. And that therefore there will be a cornucopia of new opportunities and good things to come to them. There’s a bunch of social commentary in there. One is the assumption that mathematics skill is a liberating thing. Perhaps it is the gloom of the times but I doubt that an oppressed group developing skills causes them to be esteemed. It seems more likely to me to make the skills become devalued. Social justice isn’t a matter of good exam grades.

Then, too, it’s not as though women haven’t done mathematics since forever. Every mathematics department on a college campus has some faded posters about Emmy Noether and Sofia Kovalevskaya and maybe Sophie Germaine. Probably high school mathematics rooms too. Again perhaps it’s the gloom of the times. But I keep coming back to the goddess’s cynical dismissal of all this young hope.

Mort Walker and Dik Browne’s Hi and Lois for the 10th of February, 1960 and rerun the 8th portrays arithmetic as a grand-strategic imperative. Well, it means education as a strategic imperative. But arithmetic is the thing Dot uses. I imagine because it is so easy to teach as a series of trivia and quiz about. And it fits in a single panel with room to spare.

Dot: 'Now try it again: two and two is four.' Trixie: 'Fwee!' Dot: 'You're not TRYING! Do you want the Russians to get AHEAD of US!?' Trixie looks back and thinks: 'I didn't even know there was anyone back there!'
Mort Walker and Dik Browne’s Hi and Lois for the 10th of February, 1960 and rerun the 8th of August, 2017. Remember: you’re only young once, but you can be geopolitically naive forever!

Paul Trap’s Thatababy for the 8th is not quite the anthropomorphic-numerals joke of the week. It circles around that territory, though, giving a couple of odd numbers some personality.

Brian Anderson’s Dog Eat Doug for the 9th finally justifies my title for this essay, as cats ponder mathematics. Well, they ponder quantum mechanics. But it’s nearly impossible to have a serious thought about that without pondering its mathematics. This doesn’t mean calculation, mind you. It does mean understanding what kinds of functions have physical importance. And what kinds of things one can do to functions. Understand them and you can discuss quantum mechanics without being mathematically stupid. And there’s enough ways to be stupid about quantum mechanics that any you can cut down is progress.

Reading the Comics, July 22, 2017: Counter-mudgeon Edition


I’m not sure there is an overarching theme to the past week’s gifts from Comic Strip Master Command. If there is, it’s that I feel like some strips are making cranky points and I want to argue against their cases. I’m not sure what the opposite of a curmudgeon is. So I shall dub myself, pending a better idea, a counter-mudgeon. This won’t last, as it’s not really a good name, but there must be a better one somewhere. We’ll see it, now that I’ve said I don’t know what it is.

Rabbits at a chalkboard. 'The result is not at all what we expected, Von Thump. According to our calculations, parallel universes may exist, and we may also be able to link them with our own by wormholes that, in strictly mathematical terms, end up in a black top hat.'
Niklas Eriksson’s Carpe Diem for the 17th of July, 2017. First, if anyone isn’t thinking of that Pixar short then I’m not sure we can really understand each other. Second, ‘von Thump’ is a fine name for a bunny scientist and if it wasn’t ever used in the rich lore of Usenet group alt.devilbunnies I shall be disappointed. Third, Eriksson made an understandable but unfortunate mistake in composing this panel. While both rabbits are wearing glasses, they’re facing away from the viewer. It’s always correct to draw animals wearing eyeglasses, or to photograph them so. But we should get to see them in full eyeglass pelage. You’d think they would teach that in Cartoonist School or something.

Niklas Eriksson’s Carpe Diem for the 17th features the blackboard full of equations as icon for serious, deep mathematical work. It also features rabbits, although probably not for their role in shaping mathematical thinking. Rabbits and their breeding were used in the simple toy model that gave us Fibonacci numbers, famously. And the population of Arctic hares gives those of us who’ve reached differential equations a great problem to do. The ecosystem in which Arctic hares live can be modelled very simply, as hares and a generic predator. We can model how the populations of both grow with simple equations that nevertheless give us surprises. In a rich, diverse ecosystem we see a lot of population stability: one year where an animal is a little more fecund than usual doesn’t matter much. In the sparse ecosystem of the Arctic, and the one we’re building worldwide, small changes can have matter enormously. We can even produce deterministic chaos, in which if we knew exactly how many hares and predators there were, and exactly how many of them would be born and exactly how many would die, we could predict future populations. But the tiny difference between our attainable estimate and the reality, even if it’s as small as one hare too many or too few in our model, makes our predictions worthless. It’s thrilling stuff.

Vic Lee’s Pardon My Planet for the 17th reads, to me, as a word problem joke. The talk about how much change Marian should get back from Blake could be any kind of minor hassle in the real world where one friend covers the cost of something for another but expects to be repaid. But counting how many more nickels one person has than another? That’s of interest to kids and to story-problem authors. Who else worries about that count?

Fortune teller: 'All of your money problems will soon be solved, including how many more nickels Beth has than Jonathan, and how much change Marian should get back from Blake.'
Vic Lee’s Pardon My Planet for the 17th of July, 2017. I am surprised she had no questions about how many dimes Jonathan must have, although perhaps that will follow obviously from knowing the Beth nickel situation.

Jef Mallet’s Frazz for the 17th straddles that triple point joining mathematics, philosophy, and economics. It seems sensible, in an age that embraces the idea that everything can be measured, to try to quantify happiness. And it seems sensible, in age that embraces the idea that we can model and extrapolate and act on reasonable projections, to try to see what might improve our happiness. This is so even if it’s as simple as identifying what we should or shouldn’t be happy about. Caulfield is circling around the discovery of utilitarianism. It’s a philosophy that (for my money) is better-suited to problems like how ought the city arrange its bus lines than matters too integral to life. But it, too, can bring comfort.

Corey Pandolph’s Barkeater Lake rerun for the 20th features some mischievous arithmetic. I’m amused. It turns out that people do have enough of a number sense that very few people would let “17 plus 79 is 4,178” pass without comment. People might not be able to say exactly what it is, on a glance. If you answered that 17 plus 79 was 95, or 102, most people would need to stop and think about whether either was right. But they’re likely to know without thinking that it can’t be, say, 56 or 206. This, I understand, is so even for people who aren’t good at arithmetic. There is something amazing that we can do this sort of arithmetic so well, considering that there’s little obvious in the natural world that would need the human animal to add 17 and 79. There are things about how animals understand numbers which we don’t know yet.

Alex Hallatt’s Human Cull for the 21st seems almost a direct response to the Barkeater Lake rerun. Somehow “making change” is treated as the highest calling of mathematics. I suppose it has a fair claim to the title of mathematics most often done. Still, I can’t get behind Hallatt’s crankiness here, and not just because Human Cull is one of the most needlessly curmudgeonly strips I regularly read. For one, store clerks don’t need to do mathematics. The cash registers do all the mathematics that clerks might need to do, and do it very well. The machines are cheap, fast, and reliable. Not using them is an affectation. I’ll grant it gives some charm to antiques shops and boutiques where they write your receipt out by hand, but that’s for atmosphere, not reliability. And it is useful the clerk having a rough idea what the change should be. But that’s just to avoid the risk of mistakes getting through. No matter how mathematically skilled the clerk is, there’ll sometimes be a price entered wrong, or the customer’s money counted wrong, or a one-dollar bill put in the five-dollar bill’s tray, or a clerk picking up two nickels when three would have been more appropriate. We should have empathy for the people doing this work.

Reading the Comics, June 17, 2017: Icons Of Mathematics Edition


Comic Strip Master Command just barely missed being busy enough for me to split the week’s edition. Fine for them, I suppose, although it means I’m going to have to scramble together something for the Tuesday or the Thursday posting slot. Ah well. As befits the comics, there’s a fair bit of mathematics as an icon in the past week’s selections. So let’s discuss.

Mark Anderson’s Andertoons for the 11th is our Mark Anderson’s Andertoons for this essay. Kind of a relief to have that in right away. And while the cartoon shows a real disaster of a student at the chalkboard, there is some truth to the caption. Ruling out plausible-looking wrong answers is progress, usually. So is coming up with plausible-looking answers to work out whether they’re right or wrong. The troubling part here, I’d say, is that the kid came up with pretty poor guesses about what the answer might be. He ought to be able to guess that it’s got to be an odd number, and has to be less than 10, and really ought to be less than 7. If you spot that then you can’t make more than two wrong guesses.

Patrick J Marrin’s Francis for the 12th starts with what sounds like a logical paradox, about whether the Pope could make an infallibly true statement that he was not infallible. Really it sounds like a bit of nonsense. But the limits of what we can know about a logical system will often involve questions of this form. We ask whether something can prove whether it is provable, for example, and come up with a rigorous answer. So that’s the mathematical content which justifies my including this strip here.

Border Collis are, as we know, highly intelligent. The dogs are gathered around a chalkboard full of mathematics. 'I've checked my calculations three times. Even if master's firm and calm and behaves like an alpha male, we *should* be able to whip him.'
Niklas Eriksson’s Carpe Diem for the 13th of June, 2017. Yes, yes, it’s easy to get people excited for the Revolution, but it’ll come to a halt when someone asks about how they get the groceries afterwards.

Niklas Eriksson’s Carpe Diem for the 13th is a traditional use of the blackboard full of mathematics as symbolic of intelligence. Of course ‘E = mc2‘ gets in there. I’m surprised that both π and 3.14 do, too, for as little as we see on the board.

Mark Anderson’s Andertoons for the 14th is a nice bit of reassurance. Maybe the cartoonist was worried this would be a split-week edition. The kid seems to be the same one as the 11th, but the teacher looks different. Anyway there’s a lot you can tell about shapes from their perimeter alone. The one which most startles me comes up in calculus: by doing the right calculation about the lengths and directions of the edge of a shape you can tell how much area is inside the shape. There’s a lot of stuff in this field — multivariable calculus — that’s about swapping between “stuff you know about the boundary of a shape” and “stuff you know about the interior of the shape”. And finding area from tracing the boundary is one of them. It’s still glorious.

Samson’s Dark Side Of The Horse for the 14th is a counting-sheep joke and a Pi Day joke. I suspect the digits of π would be horrible for lulling one to sleep, though. They lack the just-enough-order that something needs for a semiconscious mind to drift off. Horace would probably be better off working out Collatz sequences.

Dana Simpson’s Phoebe and her Unicorn for the 14th mentions mathematics as iconic of what you do at school. Book reports also make the cut.

Dr Zarkov: 'Flash, this is Professor Quita, the inventor of the ... ' Prof Quita: 'Caramba! NO! I am a mere mathematician! With numbers, equations, paper, pencil, I work ... it is my good amigo, Dr Zarkov, who takes my theories and builds ... THAT!!' He points to a bigger TV screen.
Dan Barry’s Flash Gordon for the 31st of July, 1962, rerun the 16th of June, 2017. I am impressed that Dr Zarkov can make a TV set capable of viewing alternate universes. I still literally do not know how it is possible that we have sound for our new TV set, and I labelled and connected every single wire in the thing. Oh, wouldn’t it be a kick if Dr Zarkov has the picture from one alternate universe but the sound from a slightly different other one?

Dan Barry’s Flash Gordon for the 31st of July, 1962 and rerun the 16th I’m including just because I love the old-fashioned image of a mathematician in Professor Quita here. At this point in the comic strip’s run it was set in the far-distant future year of 1972, and the action here is on one of the busy multinational giant space stations. Flash himself is just back from Venus where he’d set up some dolphins as assistants to a fish-farming operation helping to feed that world and ours. And for all that early-60s futurism look at that gorgeous old adding machine he’s still got. (Professor Quinta’s discovery is a way to peer into alternate universes, according to the next day’s strip. I’m kind of hoping this means they’re going to spend a week reading Buck Rogers.)

Reading the Comics, June 10, 2017: Some Vintage Comics Edition


It’s too many comics to call this a famine edition, after last week’s feast. But there’s not a lot of theme to last week’s mathematically-themed comic strips. There’s a couple that include vintage comic strips from before 1940, though, so let’s run with that as a title.

Glenn McCoy and Gary McCoy’s The Flying McCoys for the 4th of June is your traditional blackboard full of symbols to indicate serious and deep thought on a subject. It’s a silly subject, but that’s fine. The symbols look to me gibberish, but clown research will go along non-traditional paths, I suppose.

Bill Hinds’s Tank McNamara for the 4th is built on mathematics’ successful invasion and colonization of sports management. Analytics, sabermetrics, Moneyball, whatever you want to call it, is built on ideas not far removed from the quality control techniques that changed corporate management so. Look for patterns; look for correlations; look for the things that seem to predict other things. It seems bizarre, almost inhuman, that we might be able to think of football players as being all of a kind, that what we know about (say) one running back will tell us something about another. But if we put roughly similarly capable people through roughly similar training and set them to work in roughly similar conditions, then we start to see why they might perform similarly. Models can help us make better, more rational, choices.

Morrie Turner’s Wee Pals rerun for the 4th is another word-problem resistance joke. I suppose it’s also a reminder about the unspoken assumptions in a problem. It also points out why mathematicians end up speaking in an annoyingly precise manner. It’s an attempt to avoid being shown up like Oliver is.

Which wouldn’t help with Percy Crosby’s Skippy for the 7th of April, 1930, and rerun the 5th. Skippy’s got a smooth line of patter to get out of his mother’s tutoring. You can see where Percy Crosby has the weird trait of drawing comics in 1930 that would make sense today still; few pre-World-War-II comics do.

Why some of us don't like math. One part of the brain: 'I'm trying to solve an equation, but it's HARD when someone in here keeps shouting FIGHT, FLIGHT, FIGHT, FLIGHT the whole time.' Another part: 'I know, but we should fight or run away.' Another part: 'I just want to cry.'
Niklas Eriksson’s Carpe Diem for the 7th of June, 2017. If I may intrude in someone else’s work, it seems to me that the problem-solver might find a hint to what ‘x’ is by looking to the upper right corner of the page and the x = \sqrt{13} already there.

Niklas Eriksson’s Carpe Diem for the 7th is a joke about mathematics anxiety. I don’t know that it actually explains anything, but, eh. I’m not sure there is a rational explanation for mathematics anxiety; if there were, I suppose it wouldn’t be anxiety.

George Herriman’s Krazy Kat for the 15th of July, 1939, and rerun the 8th, extends that odd little faintly word-problem-setup of the strips I mentioned the other day. I suppose identifying when two things moving at different speeds will intersect will always sound vaguely like a story problem.

Krazy: 'The ida is that I run this way at fotty miles a hour eh?' Ignatz: 'Right, and my good arm will speed this brick behind you, at a sixty-mile gait - come on - get going - ' And Krazy runs past a traffic signal. The brick reaches the signal, which has changed to 'stop', and drops dead. Ignatz: 'According to the ballistic law, my projectile must be well up to him by now.' Officer Pupp: 'Unless the traffic law interferes, mousie.'
George Herriman’s Krazy Kat for the 15th of July, 1939, as rerun the 8th of June, 2017. I know the comic isn’t to everyone’s taste, but I like it. I’m also surprised to see something as directly cartoonish as the brick stopping in midair like that in the third panel. The comic is usually surreal, yes, but not that way.

Tom Toles’s Randolph Itch, 2 am rerun for the 9th is about the sometimes-considered third possibility from a fair coin toss, and how to rig the results of that.