## The Summer 2017 Mathematics A To Z: Benford's Law

Today’s entry in the Summer 2017 Mathematics A To Z is one for myself. I couldn’t post this any later.

# Benford’s Law.

My car’s odometer first read 9 on my final test drive before buying it, in June of 2009. It flipped over to 10 barely a minute after that, somewhere near Jersey Freeze ice cream parlor at what used to be the Freehold Traffic Circle. Ask a Central New Jersey person of sufficient vintage about that place. Its odometer read 90 miles sometime that weekend, I think while I was driving to The Book Garden on Route 537. Ask a Central New Jersey person of sufficient reading habits about that place. It’s still there. It flipped over to 100 sometime when I was driving back later that day.

The odometer read 900 about two months after that, probably while I was driving to work, as I had a longer commute in those days. It flipped over to 1000 a couple days after that. The odometer first read 9,000 miles sometime in spring of 2010 and I don’t remember what I was driving to for that. It flipped over from 9,999 to 10,000 miles several weeks later, as I pulled into the car dealership for its scheduled servicing. Yes, this kind of impressed the dealer that I got there exactly on the round number.

The odometer first read 90,000 in late August of last year, as I was driving to some competitive pinball event in western Michigan. It’s scheduled to flip over to 100,000 miles sometime this week as I get to the dealer for its scheduled maintenance. While cars have gotten to be much more reliable and durable than they used to be, the odometer will never flip over to 900,000 miles. At least I can’t imagine owning it long enough, at my rate of driving the past eight years, that this would ever happen. It’s hard to imagine living long enough for the car to reach 900,000 miles. Thursday or Friday it should flip over to 100,000 miles. The leading digit on the odometer will be 1 or, possibly, 2 for the rest of my association with it.

The point of this little autobiography is this observation. Imagine all the days that I have owned this car, from sometime in June 2009 to whatever day I sell, lose, or replace it. Pick one. What is the leading digit of my odometer on that day? It could be anything from 1 to 9. But it’s more likely to be 1 than it is 9. Right now it’s as likely to be any of the digits. But after this week the chance of ‘1’ being the leading digit will rise, and become quite more likely than that of ‘9’. And it’ll never lose that edge.

This is a reflection of Benford’s Law. It is named, as most mathematical things are, imperfectly. The law-namer was Frank Benford, a physicist, who in 1938 published a paper The Law Of Anomalous Numbers. It confirmed the observation of Simon Newcomb. Newcomb was a 19th century astronomer and mathematician of an exhausting number of observations and developments. Newcomb observed the logarithm tables that anyone who needed to compute referred to often. The earlier pages were more worn-out and dirty and damaged than the later pages. People worked with numbers that start with ‘1’ more than they did numbers starting with ‘2’. And more those that start ‘2’ than start ‘3’. More that start with ‘3’ than start with ‘4’. And on. Benford showed this was not some fluke of calculations. It turned up in bizarre collections of data. The surface areas of rivers. The populations of thousands of United States municipalities. Molecular weights. The digits that turned up in an issue of Reader’s Digest. There is a bias in the world toward numbers that start with ‘1’.

And this is, prima facie, crazy. How can the surface areas of rivers somehow prefer to be, say, 100-199 hectares instead of 500-599 hectares? A hundred is a human construct. (Indeed, it’s many human constructs.) That we think ten is an interesting number is an artefact of our society. To think that 100 is a nice round number and that, say, 81 or 144 are not is a cultural choice. Grant that the digits of street addresses of people listed in American Men of Science — one of Benford’s data sources — have some cultural bias. How can another of his sources, molecular weights, possibly?

The bias sneaks in subtly. Don’t they all? It lurks at the edge of the table of data. The table header, perhaps, where it says “River Name” and “Surface Area (sq km)”. Or at the bottom where it says “Length (miles)”. Or it’s never explicit, because I take for granted people know my car’s mileage is measured in miles.

What would be different in my introduction if my car were Canadian, and the odometer measured kilometers instead? … Well, I’d not have driven the 9th kilometer; someone else doing a test-drive would have. The 90th through 99th kilometers would have come a little earlier that first weekend. The 900th through 999th kilometers too. I would have passed the 99,999th kilometer years ago. In kilometers my car has been in the 100,000s for something like four years now. It’s less absurd that it could reach the 900,000th kilometer in my lifetime, but that still won’t happen.

What would be different is the precise dates about when my car reached its milestones, and the amount of days it spent in the 1’s and the 2’s and the 3’s and so on. But the proportions? What fraction of its days it spends with a 1 as the leading digit versus a 2 or a 5? … Well, that’s changed a little bit. There is some final mile, or kilometer, my car will ever register and it makes a little difference whether that’s 239,000 or 385,000. But it’s only a little difference. It’s the difference in how many times a tossed coin comes up heads on the first 1,000 flips versus the second 1,000 flips. They’ll be different numbers, but not that different.

What’s the difference between a mile and a kilometer? A mile is longer than a kilometer, but that’s it. They measure the same kinds of things. You can convert a measurement in miles to one in kilometers by multiplying by a constant. We could as well measure my car’s odometer in meters, or inches, or parsecs, or lengths of football fields. The difference is what number we multiply the original measurement by. We call this “scaling”.

Whatever we measure, in whatever unit we measure, has to have a leading digit of something. So it’s got to have some chance of starting out with a ‘1’, some chance of starting out with a ‘2’, some chance of starting out with a ‘3’, and so on. But that chance can’t depend on the scale. Measuring something in smaller or larger units doesn’t change the proportion of how often each leading digit is there.

These facts combine to imply that leading digits follow a logarithmic-scale law. The leading digit should be a ‘1’ something like 30 percent of the time. And a ‘2’ about 18 percent of the time. A ‘3’ about one-eighth of the time. And it decreases from there. ‘9’ gets to take the lead a meager 4.6 percent of the time.

Roughly. It’s not going to be so all the time. Measure the heights of humans in meters and there’ll be far more leading digits of ‘1’ than we should expect, as most people are between 1 and 2 meters tall. Measure them in feet and ‘5’ and ‘6’ take a great lead. The law works best when data can sprawl over many orders of magnitude. If we lived in a world where people could as easily be two inches as two hundred feet tall, Benford’s Law would make more accurate predictions about their heights. That something is a mathematical truth does not mean it’s independent of all reason.

For example, the reader thinking back some may be wondering: granted that atomic weights and river areas and populations carry units with them that create this distribution. How do street addresses, one of Benford’s observed sources, carry any unit? Well, street addresses are, at least in the United States custom, a loose measure of distance. The 100 block (for example) of a street is within one … block … from whatever the more important street or river crossing that street is. The 900 block is farther away.

This extends further. Block numbers are proxies for distance from the major cross feature. House numbers on the block are proxies for distance from the start of the block. We have a better chance to see street number 419 than 1419, to see 419 than 489, or to see 419 than to see 1489. We can look at Benford’s Law in the second and third and other minor digits of numbers. But we have to be more cautious. There is more room for variation and quirk events. A block-filling building in the downtown area can take whatever street number the owners think most auspicious. Smaller samples of anything are less predictable.

Nevertheless, Benford’s Law has become famous to forensic accountants the past several decades, if we allow the use of the word “famous” in this context. But its fame is thanks to the economists Hal Varian and Mark Nigrini. They observed that real-world financial data should be expected to follow this same distribution. If they don’t, then there might be something suspicious going on. This is not an ironclad rule. There might be good reasons for the discrepancy. If your work trips are always to the same location, and always for one week, and there’s one hotel it makes sense to stay at, and you always learn you’ll need to make the trips about one month ahead of time, of course the hotel bill will be roughly the same. Benford’s Law is a simple, rough tool, a way to decide what data to scrutinize for mischief. With this in mind I trust none of my readers will make the obvious leading-digit mistake when padding their expense accounts anymore.

Since I’ve done you that favor, anyone out there think they can pick me up at the dealer’s Thursday, maybe Friday? Thanks in advance.

## Theorem Thursday: The Intermediate Value Theorem

I am still taking requests for this Theorem Thursdays sequence. I intend to post each Thursday in June and July an essay talking about some theorem and what it means and why it’s important. I have gotten a couple of requests in, but I’m happy to take more; please just give me a little lead time. But I want to start with one that delights me.

# The Intermediate Value Theorem

I own a Scion tC. It’s a pleasant car, about 2400 percent more sporty than I am in real life. I got it because it met my most important criteria: it wasn’t expensive and it had a sun roof. That it looks stylish is an unsought bonus.

But being a car, and a black one at that, it has a common problem. Leave it parked a while, then get inside. In the winter, it gets so cold that snow can fall inside it. In the summer, it gets so hot that the interior, never mind the passengers, risks melting. While pondering this slight inconvenience I wondered, isn’t there any outside temperature that leaves my car comfortable?

Of course there is. We know this before thinking about it. The sun heats the car, yes. When the outside temperature is low enough, there’s enough heat flowing out that the car gets cold. When the outside temperature’s high enough, not enough heat flows out. The car stays warm. There must be some middle temperature where just enough heat flows out that the interior doesn’t get particularly warm or cold. Not just one middle temperature, come to that. There is a range of temperatures that are comfortable to sit in. But that just means there’s a range of outside temperatures for which the car’s interior stays comfortable. We know this range as late April, early May, here. Most years, anyway.

The reasoning that lets us know there is a comfort-producing outside temperature we can see as a use of the Intermediate Value Theorem. It addresses a function f with domain [a, b], and range of the real numbers. The domain is closed; that is, the numbers we call ‘a’ and ‘b’ are both in the set. And f has to be a continuous function. If you want to draw it, you can do so without having to lift pen from paper. (WARNING: Do not attempt to pass your Real Analysis course with that definition. But that’s what the proper definition means.)

So look at the numbers f(a) and f(b). Pick some number between them, and I’ll call that number ‘g’. There must be at least one number ‘c’, that’s between ‘a’ and ‘b’, and for which f(c) equals g.

Bernard Bolzano, an early-19th century mathematician/logician/theologist/priest, gets the credit for first proving this theorem. Bolzano’s version was a little different. It supposes that f(a) and f(b) are of opposite sign. That is, f(a) is a positive and f(b) a negative number. Or f(a) is negative and f(b) is positive. And Bolzano’s theorem says there must be some number ‘c’ for which f(c) is zero.

You can prove this by drawing any wiggly curve at all and then a horizontal line in the middle of it. Well, that doesn’t prove it to mathematician’s satisfaction. But it will prove the matter in the sense that you’ll be convinced. It’ll also convince anyone you try explaining this to.

You might wonder why anyone needed this proved at all. It’s a bit like proving that as you pour water into the sink there’ll come a time the last dish gets covered with water. So it is. The need for a proof came about from the ongoing attempt to make mathematics rigorous. We have an intuitive idea of what it means for functions to be continuous; see my above comment about lifting pens from paper. Can that be put in terms that don’t depend on physical intuition? … Yes, it can. And we can divorce the Intermediate Value Theorem from our physical intuitions. We can know something that’s true even if we never see a car or a sink.

This theorem might leave you feeling a little hollow inside. Proving that there is some ‘c’ for which f(c) equals g, or even equals zero, doesn’t seem to tell us much about how to find it. It doesn’t even tell us that there’s only one ‘c’, rather than two or three or a hundred million candidates that meet our criteria. Fair enough. The Intermediate Value Theorem is more about proving the existence of solutions, rather than how to find them.

But knowing there is a solution can help us find them. The Intermediate Value Theorem as we know it grew out of finding roots for polynomials. One numerical method, easy to set up for any problem, is the bisection method. If you know that somewhere between ‘a’ and ‘b’ the function goes from positive to negative, then find the midpoint, ‘c’. The function is equal to zero either between ‘a’ and ‘c’, or between ‘c’ and ‘b’. Pick the side that it’s on, and bisect that. Pick the half of that which the zero must be in. Bisect that half. And repeat until you get close enough to the answer for your needs. (The same reasoning applies to a lot of problems in which you divide the search range in two each time until the answer appears.)

We can get some pretty heady results from the Intermediate Value Theorem, too, even if we don’t know where any of them are. An example you’ll see everywhere is that there must be spots on the opposite sides of the globe with the exact same temperature. Or humidity, or daily rainfall, or any other quantity like that. I had thought everyone was ripping that example off from Richard Courant and Herbert Robbins’s masterpiece What Is Mathematics?. But I can’t find this particular example in there. I wonder what we are all ripping it off from.

So here’s a neat example that is ripped off from them. Draw two blobs on the plane. Is there a straight line that bisects both of them at once? Bisecting here means there’s exactly as much of one blob on one side of the line as on the other. There certainly is. The trick is there are any number of lines that will bisect one blob, and then look at what that does to the other.

A similar ripped-off result you can do with a single blob of any shape you like. Draw any line that bisects it. There are a lot of candidates. Can you draw a line perpendicular to that so that the blob gets quartered, divided into four spots of equal area? Yes. Try it.

But surely the best use of the Intermediate Value Theorem is in the problem of wobbly tables. If the table has four legs, all the same length, and the problem is the floor isn’t level it’s all right. There is some way to adjust the table so it won’t wobble. (Well, the ground can’t be angled more than a bit over 35 degrees, but that’s all right. If the ground has a 35 degree angle you aren’t setting a table on it. You’re rolling down it.) Finally a mathematical proof can save us from despair!

Except that the proof doesn’t work if the table legs are uneven which, alas, they often are. But we can’t get everything.

Courant and Robbins put forth one more example that’s fantastic, although it doesn’t quite work. But it’s a train problem unlike those you’ve seen before. Let me give it to you as they set it out:

Suppose a train travels from station A to station B along a straight section of track. The journey need not be of uniform speed or acceleration. The train may act in any manner, speeding up, slowing down, coming to a halt, or even backing up for a while, before reaching B. But the exact motion of the train is supposed to be known in advance; that is, the function s = f(t) is given, where s is the distance of the train from station A, and t is the time, measured from the instant of departure.

On the floor of one of the cars a rod is pivoted so that it may move without friction either forward or backward until it touches the floor. If it does touch the floor, we assume that it remains on the floor henceforth; this wil be the case if the rod does not bounce.

Is it possible to place the rod in such a position that, if it is released at the instant when the train starts and allowed to move solely under the influence of gravity and the motion of the train, it will not fall to the floor during the entire journey from A to B?

They argue it is possible, and use the Intermediate Value Theorem to show it. They admit the range of angles it’s safe to start the rod from may be too small to be useful.

But they’re not quite right. Ian Stewart, in the revision of What Is Mathematics?, includes an appendix about this. Stewart credits Tim Poston with pointing out, in 1976, the flaw. It’s possible to imagine a path which causes the rod, from one angle, to just graze tipping over, let’s say forward, and then get yanked back and fall over flat backwards. This would leave no room for any starting angles that avoid falling over entirely.

It’s a subtle flaw. You might expect so. Nobody mentioned it between the book’s original publication in 1941, after which everyone liking mathematics read it, and 1976. And it is one that touches on the complications of spaces. This little Intermediate Value Theorem problem draws us close to chaos theory. It’s one of those ideas that weaves through all mathematics.

## Solving The Price Is Right’s “Any Number” Game

A friend who’s also into The Price Is Right claimed to have noticed something peculiar about the “Any Number” game. Let me give context before the peculiarity.

This pricing game is the show’s oldest — it was actually the first one played when the current series began in 1972, and also the first pricing game won — and it’s got a wonderful simplicity: four digits from the price of a car (the first digit, nearly invariably a 1 or a 2, is given to the contestant and not part of the game), three digits from the price of a decent but mid-range prize, and three digits from a “piggy bank” worth up to \$9.87 are concealed. The contestant guesses digits from zero through nine inclusive, and they’re revealed in the three prices. The contestant wins whichever prize has its price fully revealed first. This is a steadily popular game, and one of the rare Price games which guarantees the contestant wins something.

A couple things probably stand out. The first is that if you’re very lucky (or unlucky) you can win with as few as three digits called, although it might be the piggy bank for a measly twelve cents. (Past producers have said they’d never let the piggy bank hold less than \$1.02, which still qualifies as “technically something”.) The other is that no matter how bad you are, you can’t take more than eight digits to win something, though it might still be the piggy bank.

What my friend claimed to notice was that these “Any Number” games went on to the last possible digit “all the time”, and he wanted to know, why?

My first reaction was: “all” the time? Well, at least it happened an awful lot of the time. But I couldn’t think of a particular reason that they should so often take the full eight digits needed, or whether they actually did; it’s extremely easy to fool yourself about how often events happen when there’s a complicated possibile set of events. But stipulating that eight digits were often needed, then, why should they be needed? (For that matter, trusting the game not to be rigged — and United States televised game shows are by legend extremely sensitive to charges of rigging — how could they be needed?) Could I explain why this happened? And he asked again, enough times that I got curious myself.