I know it seems like when I write these essays I spend the most time on the first comic in the bunch and give the last ones a sentence, maybe two at most. I admit when there’s a lot of comics I have to write up at once my energy will droop. But Comic Strip Master Command apparently wants the juiciest topics sent out earlier in the week. I have to follow their lead.

Stephen Beals’s **Adult Children** for the 14th uses mathematics to signify deep thinking. In this case Claremont, the dog, is thinking of the Riemann Zeta function. It’s something important in number theory, so longtime readers should know this means it leads right to an unsolved problem. In this case it’s the Riemann Hypothesis. That’s the most popular candidate for “what is the most important unsolved problem in mathematics right now?” So you know Claremont is a deep-thinking dog.

The big Σ ordinary people might recognize as representing “sum”. The notation means to evaluate, for each legitimate value of the thing underneath — here it’s ‘n’ — the value of the expression to the right of the Sigma. Here that’s . Then add up all those terms. It’s not explicit here, but context would make clear, n is positive whole numbers: 1, 2, 3, and so on. s would be a positive number, possibly a whole number.

The big capital Pi is more mysterious. It’s Sigma’s less popular brother. It means “product”. For each legitimate value of the thing underneath it — here it’s “p” — evaluate the expression on the right. Here that’s . Then multiply all that together. In the context of the Riemann Zeta function, “p” here isn’t just any old number, or even any old whole number. It’s only the prime numbers. Hence the “p”. Good notation, right? Yeah.

This particular equation, once shored up with the context the symbols live in, was proved by Leonhard Euler, who proved so much you sometimes wonder if later mathematicians were needed at all. It ties in to how often whole numbers are going to be prime, and what the chances are that some set of numbers are going to have no factors in common. (Other than 1, which is too boring a number to call a factor.) But even if Claremont did know that Euler got there first, it’s almost impossible to do good new work without understanding the old.

Charlos Gary’s **Working It Out** for the 14th is this essay’s riff on pie charts. Or bar charts. Somewhere around here the past week I read that a French idiom for the pie chart is the “cheese chart”. That’s a good enough bit I don’t want to look more closely and find out whether it’s true. If it turned out to be false I’d be heartbroken.

Ryan North’s **Dinosaur Comics** for the 15th talks about everyone’s favorite physics term, entropy. Everyone knows that it tends to increase. Few advanced physics concepts feel so important to everyday life. I almost made one expression of this — Boltzmann’s H-Theorem — a Theorem Thursday post. I might do a proper essay on it yet. Utahraptor describes this as one of “the few statistical laws of physics”, which I think is a bit unfair. There’s a lot about physics that is statistical; it’s often easier to deal with averages and distributions than the mass of real messy data.

Utahraptor’s right to point out that it isn’t *impossible* for entropy to decrease. It can be *expected* not to, in time. Indeed decent scientists thinking as philosophers have proposed that “increasing entropy” might be the only way to meaningfully define the flow of time. (I do not know how decent the philosophy of this is. This is far outside my expertise.) However: we would expect at least one tails to come up if we simultaneously flipped infinitely many coins fairly. But there is no reason that it couldn’t happen, that infinitely many fairly-tossed coins might all come up heads. The probability of this ever happening is zero. If we try it enough times, it will happen. Such is the intuition-destroying nature of probability and of infinitely large things.

Tony Cochran’s **Agnes** on the 16th proposes to decode the Voynich Manuscript. Mathematics comes in as something with answers that one can check for comparison. It’s a familiar role. As I seem to write three times a month, this is fair enough to say to an extent. Coming up with an answer to a mathematical question is hard. Checking the answer is typically easier. Well, there are many things we can try to find an answer. To see whether a proposed answer works usually we just need to go through it and see if the logic holds. This might be tedious to do, especially in those enormous brute-force problems where the proof amounts to showing there are a hundred zillion special cases and here’s an answer for each one of them. But it’s usually a much less hard thing to do.

Johnny Hart and Brant Parker’s **Wizard of Id Classics** for the 17th uses what seems like should be an old joke about bad accountants and nepotism. Well, you all know how important bookkeeping is to the history of mathematics, even if I’m never that specific about it because it never gets mentioned in the histories of mathematics I read. And apparently sometime between the strip’s original appearance (the 20th of August, 1966) and my childhood the Royal Accountant character got forgotten. That seems odd given the comic potential I’d imagine him to have. Sometimes a character’s only good for a short while is all.

Mark Anderson’s **Andertoons** for the 18th is the **Andertoons** representative for this essay. Fair enough. The kid speaks of exponents as a kind of repeating oneself. This is how exponents are inevitably introduced: as multiplying a number by itself many times over. That’s a solid way to introduce raising a number to a whole number. It gets a little strained to describe raising a number to a rational number. It’s a confusing mess to describe raising a number to an irrational number. But you can make that logical enough, with effort. And that’s how we do make the idea rigorous. A number raised to (say) the square root of two is something greater than the number raised to 1.4, but less than the number raised to 1.5. More than the number raised to 1.41, less than the number raised to 1.42. More than the number raised to 1.414, less than the number raised to 1.415. This takes work, but it all hangs together. And then we ask about raising numbers to an imaginary or complex-valued number and we wave that off to a higher-level mathematics class.

Nate Fakes’s **Break of Day** for the 18th is the anthropomorphic-numerals joke for this essay.

Lachowski’s **Get A Life** for the 18th is the sudoku joke for this essay. It’s also a representative of the idea that any mathematical thing is some deep, complicated puzzle at least as challenging as calculating one’s taxes. I feel like this is a rerun, but I don’t see any copyright dates. Sudoku jokes like this feel old, but comic strips have been known to make dated references before.

Samson’s **Dark Side Of The Horse** for the 19th is this essay’s **Dark Side Of The Horse** gag. I thought initially this was a counting-sheep in a lab coat. I’m going to stick to that mistaken interpretation because it’s more adorable that way.