My All 2020 Mathematics A to Z: Yang Hui


Nobody had particular suggestions for the letter ‘Y’ this time around. It’s a tough letter to find mathematical terms for. It doesn’t even lend itself to typography or wordplay the way ‘X’ does. So I chose to do one more biographical piece before the series concludes. There were twists along the way in writing.

Before I get there, I have a word for a longtime friend, Porsupah Ree. Among her hobbies is watching, and photographing, the wild rabbits. A couple years back she got a great photograph. It’s one that you may have seen going around social media with a caption about how “everybody was bun fu fighting”. She’s put it up on Redbubble, so you can get the photograph as a print or a coffee mug or a pillow, or many other things. And you can support her hobbies of rabbit photography and eating.

Color cartoon illustration of a coati in a beret and neckerchief, holding up a director's megaphone and looking over the Hollywood hills. The megaphone has the symbols + x (division obelus) and = on it. The Hollywood sign is, instead, the letters MATHEMATICS. In the background are spotlights, with several of them crossing so as to make the letters A and Z; one leg of the spotlights has 'TO' in it, so the art reads out, subtly, 'Mathematics A to Z'.
Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

Yang Hui.

Several problems beset me in writing about this significant 13th-century Chinese mathematician. One is my ignorance of the Chinese mathematical tradition. I have little to guide me in choosing what tertiary sources to trust. Another is that the tertiary sources know little about him. The Complete Dictionary of Scientific Biography gives a dire verdict. “Nothing is known about the life of Yang Hui, except that he produced mathematical writings”. MacTutor’s biography gives his lifespan as from circa 1238 to circa 1298, on what basis I do not know. He seems to have been born in what’s now Hangzhou, near Shanghai. He seems to have worked as a civil servant. This is what I would have imagined; most scholars then were. It’s the sort of job that gives one time to write mathematics. Also he seems not to have been a prominent civil servant; he’s apparently not listed in any dynastic records. After that, we need to speculate.

E F Robertson, writing the MacTutor biography, speculates that Yang Hui was a teacher. That he was writing to explain mathematics in interesting and helpful ways. I’m not qualified to judge Robertson’s conclusions. And Robertson notes that’s not inconsistent with Yang being a civil servant. Robertson’s argument is based on Yang’s surviving writings, and what they say about the demonstrated problems. There is, for example, 1274’s Cheng Chu Tong Bian Ben Mo. Robertson translates that title as Alpha and omega of variations on multiplication and division. I try to work out my unease at having something translated from Chinese as “Alpha and Omega”. That is my issue. Relevant here is that a syllabus prefaces the first chapter. It provides a schedule and series of topics, as well as a rationale for why this plan.

Was Yang Hui a discoverer of significant new mathematics? Or did he “merely” present what was already known in a useful way? This is not to dismiss him; we have the same questions about Euclid. He is held up as among the great Chinese mathematicians of the 13th century, a particularly fruitful time and place for mathematics. How much greatness to assign to original work and how much to good exposition is unanswerable with what we know now.

Consider for example the thing I’ve featured before, Yang Hui’s Triangle. It’s the arrangement of numbers known in the west as Pascal’s Triangle. Yang provides the earliest extant description of the triangle and how to form it and use it. This in the 1261 Xiangjie jiuzhang suanfa (Detailed analysis of the mathematical rules in the Nine Chapters and their reclassifications). But in it, Yang Hui says he learned the triangle from a treatise by Jia Xian, Huangdi Jiuzhang Suanjing Xicao (The Yellow Emperor’s detailed solutions to the Nine Chapters on the Mathematical Art). Jia Xian lived in the 11th century; he’s known to have written two books, both lost. Yang Hui’s commentary gives us a fair idea what Jia Xian wrote about. But we’re limited in judging what was Jia Xian’s idea and what was Yang Hui’s inference or what.

The Nine Chapters referred to is Jiuzhang suanshu. An English title is Nine Chapters on the Mathematical Art. The book is a 246-problem handbook of mathematics that dates back to antiquity. It’s impossible to say when the Nine Chapters was first written. Liu Hui, who wrote a commentary on the Nine Chapters in 263 CE, thought it predated the Qin ruler Shih Huant Ti’s 213 BCE destruction of all books. But the book — and the many commentaries on the book — served as a centerpiece for Chinese mathematics for a long while. Jia Xian’s and Yang Hui’s work was part of this tradition.

Yang Hui’s Detailed Analysis covers the Nine Chapters. It goes on for three chapters, more about geometry and fundamentals of mathematics. Even how to classify the problems. He had further works. In 1275 Yang published Practical mathematical rules for surveying and Continuation of ancient mathematical methods for elucidating strange properties of numbers. (I’m not confident in my ability to give the Chinese titles for these.) The first title particularly echoes how in the Western tradition geometry was born of practical concerns.

The breadth of topics covers, it seems to me, a decent modern (American) high school mathematics education. The triangle, and the binomial expansions it gives us, fit that. Yang writes about more efficient ways to multiply on the abacus. He writes about finding simultaneous solutions to sets of equations. And through a technique that amounts to finding the matrix of coefficients for the equations, and its determinant. He writes about finding the roots for cubic and quartic equations. The technique is commonly known in the west as Horner’s Method, a technique of calculating divided differences. We see the calculating of areas and volumes for regular shapes.

And sequences. He found the sum of the squares of natural numbers followed a rule:

1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{1}{3}\cdot n\cdot (n + 1)\cdot (n + \frac{1}{2})

This by a method of “piling up squares”, described some here by the Mathematical Association of America. (Me, I spent 40 minutes that could have gone into this essay convincing myself the formula was right. I couldn’t make myself believe the (n + \frac{1}{2}) part and had to work it out a couple different ways.)

And then there’s magic squares, and magic circles. He seems to have found them, as professional mathematicians today would, good ways to interest people in calculation. Not magic; he called them something like number diagrams. But he gives magic squares from three-by-three all the way to ten-by-ten. We don’t know of earlier examples of Chinese mathematicians writing about the larger magic squares. But Yang Hui doesn’t claim to be presenting new work. He also gives magic circles. The simplest is a web of seven intersecting circles, each with four numbers along the circle and one at its center. The sum of the center and the circumference numbers are 65 for all seven circles. Is this significant? No; merely fun.

Grant this breadth of work. Is he significant? I learned this year that familiar names might have been obscure until quite recently. The record is once again ambiguous. Other mathematicians wrote about Yang Hui’s work in the early 1300s. Yang Hui’s works were printed in China in 1378, says the Complete Dictionary of Scientific Biography, and reprinted in Korea in 1433. They’re listed in a 1441 catalogue of the Ming Imperial Library. Seki Takakazu, a towering figure in 17th century Japanese mathematics, copied the Korean text by hand. Yet Yang Hui’s work seems to have been lost by the 18th century. Reconstructions, from commentaries and encyclopedias, started in the 19th century. But we don’t have everything we know he wrote. We don’t even have a complete text of Detailed Analysis. This is not to say he wasn’t influential. All I could say is there seems to have been a time his influence was indirect.

I am sorry to offer so much uncertainty about Yang Hui. I had hoped to provide a fuller account. But we always only know thin slivers of life, and try to use those to know anything.


Next week I hope to finish this year’s A-to-Z project. The whole All 2020 A-to-Z should be gathered at this link. And all the essays from every A-to-Z series should be at this link. I haven’t decided whether I’ll publish on Wednesday or Friday. It’ll depend what I can get done over the weekend; we’ll see. Thank you for reading.

The End 2016 Mathematics A To Z: Yang Hui’s Triangle


Today’s is another request from gaurish and another I’m glad to have as it let me learn things too. That’s a particularly fun kind of essay to have here.

Yang Hui’s Triangle.

It’s a triangle. Not because we’re interested in triangles, but because it’s a particularly good way to organize what we’re doing and show why we do that. We’re making an arrangement of numbers. First we need cells to put the numbers in.

Start with a single cell in what’ll be the top middle of the triangle. It spreads out in rows beneath that. The rows are staggered. The second row has two cells, each one-half width to the side of the starting one. The third row has three cells, each one-half width to the sides of the row above, so that its center cell is directly under the original one. The fourth row has four cells, two of which are exactly underneath the cells of the second row. The fifth row has five cells, three of them directly underneath the third row’s cells. And so on. You know the pattern. It’s the one that pins in a plinko board take. Just trimmed down to a triangle. Make as many rows as you find interesting. You can always add more later.

In the top cell goes the number ‘1’. There’s also a ‘1’ in the leftmost cell of each row, and a ‘1’ in the rightmost cell of each row.

What of interior cells? The number for those we work out by looking to the row above. Take the cells to the immediate left and right of it. Add the values of those together. So for example the center cell in the third row will be ‘1’ plus ‘1’, commonly regarded as ‘2’. In the third row the leftmost cell is ‘1’; it always is. The next cell over will be ‘1’ plus ‘2’, from the row above. That’s ‘3’. The cell next to that will be ‘2’ plus ‘1’, a subtly different ‘3’. And the last cell in the row is ‘1’ because it always is. In the fourth row we get, starting from the left, ‘1’, ‘4’, ‘6’, ‘4’, and ‘1’. And so on.

It’s a neat little arithmetic project. It has useful application beyond the joy of making something neat. Many neat little arithmetic projects don’t have that. But the numbers in each row give us binomial coefficients, which we often want to know. That is, if we wanted to work out (a + b) to, say, the third power, we would know what it looks like from looking at the fourth row of Yanghui’s Triangle. It will be 1\cdot a^4 + 4\cdot a^3 \cdot b^1 + 6\cdot a^2\cdot b^2 + 4\cdot a^1\cdot b^3 + 1\cdot b^4 . This turns up in polynomials all the time.

Look at diagonals. By diagonal here I mean a line parallel to the line of ‘1’s. Left side or right side; it doesn’t matter. Yang Hui’s triangle is bilaterally symmetric around its center. The first diagonal under the edges is a bit boring but familiar enough: 1-2-3-4-5-6-7-et cetera. The second diagonal is more curious: 1-3-6-10-15-21-28 and so on. You’ve seen those numbers before. They’re called the triangular numbers. They’re the number of dots you need to make a uniformly spaced, staggered-row triangle. Doodle a bit and you’ll see. Or play with coins or pool balls.

The third diagonal looks more arbitrary yet: 1-4-10-20-35-56-84 and on. But these are something too. They’re the tetrahedronal numbers. They’re the number of things you need to make a tetrahedron. Try it out with a couple of balls. Oranges if you’re bored at the grocer’s. Four, ten, twenty, these make a nice stack. The fourth diagonal is a bunch of numbers I never paid attention to before. 1-5-15-35-70-126-210 and so on. This is — well. We just did tetrahedrons, the triangular arrangement of three-dimensional balls. Before that we did triangles, the triangular arrangement of two-dimensional discs. Do you want to put in a guess what these “pentatope numbers” are about? Sure, but you hardly need to. If we’ve got a bunch of four-dimensional hyperspheres and want to stack them in a neat triangular pile we need one, or five, or fifteen, or so on to make the pile come out neat. You can guess what might be in the fifth diagonal. I don’t want to think too hard about making triangular heaps of five-dimensional hyperspheres.

There’s more stuff lurking in here, waiting to be decoded. Add the numbers of, say, row four up and you get two raised to the third power. Add the numbers of row ten up and you get two raised to the ninth power. You see the pattern. Add everything in, say, the top five rows together and you get the fifth Mersenne number, two raised to the fifth power (32) minus one (31, when we’re done). Add everything in the top ten rows together and you get the tenth Mersenne number, two raised to the tenth power (1024) minus one (1023).

Or add together things on “shallow diagonals”. Start from a ‘1’ on the outer edge. I’m going to suppose you started on the left edge, but remember symmetry; it’ll be fine if you go from the right instead. Add to that ‘1’ the number you get by moving one cell to the right and going up-and-right. And then again, go one cell to the right and then one cell up-and-right. And again and again, until you run out of cells. You get the Fibonacci sequence, 1-1-2-3-5-8-13-21-and so on.

We can even make an astounding picture from this. Take the cells of Yang Hui’s triangle. Color them in. One shade if the cell has an odd number, another if the cell has an even number. It will create a pattern we know as the Sierpiński Triangle. (Wacław Sierpiński is proving to be the surprise special guest star in many of this A To Z sequence’s essays.) That’s the fractal of a triangle subdivided into four triangles with the center one knocked out, and the remaining triangles them subdivided into four triangles with the center knocked out, and on and on.

By now I imagine even my most skeptical readers agree this is an interesting, useful mathematical construct. Also that they’re wondering why I haven’t said the name “Blaise Pascal”. The Western mathematical tradition knows of this from Pascal’s work, particularly his 1653 Traité du triangle arithmétique. But mathematicians like to say their work is universal, and independent of the mere human beings who find it. Constructions like this triangle give support to this. Yang lived in China, in the 12th century. I imagine it possible Pascal had hard of his work or been influenced by it, by some chain, but I know of no evidence that he did.

And even if he had, there are other apparently independent inventions. The Avanti Indian astronomer-mathematician-astrologer Varāhamihira described the addition rule which makes the triangle work in commentaries written around the year 500. Omar Khayyám, who keeps appearing in the history of science and mathematics, wrote about the triangle in his 1070 Treatise on Demonstration of Problems of Algebra. Again so far as I am aware there’s not a direct link between any of these discoveries. They are things different people in different traditions found because the tools — arithmetic and aesthetically-pleasing orders of things — were ready for them.

Yang Hui wrote about his triangle in the 1261 book Xiangjie Jiuzhang Suanfa. In it he credits the use of the triangle (for finding roots) as invented around 1100 by mathematician Jia Xian. This reminds us that it is not merely mathematical discoveries that are found by many peoples at many times and places. So is Boyer’s Law, discovered by Hubert Kennedy.