Reading the Comics, December 11, 2017: Vamping For Andertoons Edition


So Mark Anderson’s Andertoons has been missing from the list of mathematically-themed the last couple weeks. Don’t think I haven’t been worried about that. But it’s finally given another on-topic-enough strip and I’m not going to include it here. I’ve had a terrible week and I’m going to use the comics we got in last week slowly.

Hector D Cantu and Carlos Castellanos’s Baldo for the 10th of December uses algebra as the type for homework you’d need help with. It reads plausibly enough to me, at least so far as I remember learning algebra.

Greg Evans’s Luann Againn for the 10th reprints the strip of the 10th of December, 1989. And as often happens, mathematics is put up as the stuff that’s too hard to really do. The expressions put up don’t quite parse; there’s nothing to solve. But that’s fair enough for a panicked brain. To not recognize what the problem even is makes it rather hard to solve.

Ruben Bolling’s Super-Fun-Pak Comix for the 10th is an installation of Quantum Mechanic, playing on the most fun example of non-commutative processes I know. That’s the uncertainty principle, which expresses itself as pairs of quantities that can’t be precisely measured simultaneously. There are less esoteric kinds of non-commutative processes. Like, rotating something 90 degrees along a horizontal and then along a vertical axis will turn stuff different from 90 degrees vertical and then horizontal. But that’s too easy to understand to capture the imagination, at least until you’re as smart as an adult and as thoughtful as a child.

Maria Scrivan’s Half Full for the 11th features Albert Einstein and one of the few equations that everybody knows. So that’s something.

Jeff Stahler’s Moderately Confused for the 11th features the classic blackboard full of equations, this time to explain why Christmas lights wouldn’t work. There is proper mathematics in lights not working. It’s that electrical-engineering work about the flow of electricity. The problem is, typically, a broken or loose bulb. Maybe a burnt-out fuse, although I have never fixed a Christmas lights problem by replacing the fuse. It’s just something to do so you can feel like you’ve taken action before screaming in rage and throwing the lights out onto the front porch. More interesting to me is the mathematics of strands getting tangled. The idea — a foldable thread, marked at regular intervals by points that can hook together — seems trivially simple. But it can give insight into how long molecules, particularly proteins, will fold together. It may help someone frustrated to ponder that their light strands are knotted for the same reasons life can exist. But I’m not sure it ever does.

Bringing Up Arthur Christmas Again


Since it’s the week for this, I would like to remind folks they could be watching the Aardman Animation film Arthur Christmas. Also, I was able to spin out a couple of mathematical and physics questions from one scene in the film. Last year I collected links to the essays — there’s five of them — into a single cover page. I hope you’ll consider them.

The Arthur Christmas Problem


Since it’s the season for it I’d like to point new or new-wish readers to a couple of posts I did in 2012-13, based on the Aardman Animation film Arthur Christmas, which was just so very charming in every way. It also puts forth some good mathematical and mathematical-physics questions.

Opening the scene is “Could `Arthur Christmas’ Happen In Real Life?” which begins with a scene in the movie: Arthur and Grand-Santa are stranded on a Caribbean island while the reindeer and sleigh, without them, go flying off in a straight line. This raises the question of what is a straight line if you’re on the surface of something spherical like the Earth.

“Returning To Arthur Christmas” was titled that because I’d left the subject for a couple weeks, as is my wont, and it gets a little bit more spoiler-y since the film seems to come down on the side of the reindeer moving on a path called a Great Circle. This forces us to ask another question: if the reindeer are moving around the Earth, are they moving with the Earth’s rotation, like an airplane does, or freely of it, like a satellite does?

“Arthur Christmas And The Least Common Multiple” starts by supposing that the reindeer are moving the way satellites do, independent of the Earth’s rotation, and on making some assumptions about the speed of the reindeer and the path they’re taking, works out how long Arthur and Grand-Santa would need to wait before the reindeer and sled are back if they’re lucky enough to be waiting on the equator.

“Six Minutes Off” shifts matters a little, by supposing that they’re not on the equator, which makes meeting up the reindeer a much nastier bit of timing. If they’re willing to wait long enough the reindeer will come as close as they want to their position, but the wait can be impractically long, for example, eight years, or over five thousand years, which would really slow down the movie.

And finally “Arthur Christmas and the End of Time” wraps up matters with a bit of heady speculation about recurrence: the way that a physical system can, if the proper conditions are met, come back either to its starting point or to a condition arbitrarily close to its starting point, if you wait long enough. This offers some dazzling ideas about the really, really long-term fate of the universe, which is always a heady thought. I hope you enjoy.

December 2013’s Statistics


There’s a hopeful trend in my readership statistics for December 2013 around these parts: according to WordPress, my number of readers grew from 308 in November to 352 and the number of unique visitors grew from 158 to 176. Even the number of views per visitor grew, from 1.95 to 2.00. None of these are records, but the fact of improvement is a good one.

I can’t figure exactly how to get the report on most popular articles for the exact month of December, and was too busy with other things to check the past-30-day report on New Year’s Eve, but at least the most popular articles for the 30 days ending today were:

The countries sending me the most readers were the United States, Canada, Denmark and Austria (tied, and hi again, Elke), and the United Kingdom. Sending me just one viewer each were a slew of nations: Bangladesh, Cambodia, India, Japan, Jordan, Malaysia, Norway, Romania, Slovenia, South Africa, Spain, Sweden, Turkey, and Viet Nam. On that list last month were Jordan and Slovenia, so I’m also marginally interesting to a different group of people this time around.

This has all caused me to realize that I failed to promote my string of articles inspired by Arthur Christmas and getting to the recurrence theorem and the existential dread of the universe’s end during the Christmas season. Maybe next year, then.