Reading the Comics, February 24, 2018: My One Boring Linear Algebra Anecdote Edition


Wait for it.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 21st mentions mathematics — geometry, primarily — as something a substitute teacher has tried teaching with the use of a cucumber and condom. These aren’t terrible examples to use to make concrete the difference between volumes and surface areas. There are limitations, though. It’s possible to construct a shape that has a finite volume but an infinitely large surface area, albeit not using cucumbers.

There’s also a mention of the spring constant, and physics. This isn’t explicitly mathematical. But the description of movement on a spring are about the first interesting differential equation of mathematical physics. The solution is that of simple harmonic motion. I don’t think anyone taking the subject for the first time would guess at the answer. But it’s easy enough to verify it’s right. And this motion — sine waves — just turns up everywhere in mathematical physics.

Bud Blake’s Tiger rerun for the 23rd just mentions mathematics as a topic Hugo finds challenging, and what’s challenging about it. So a personal story: when I took Intro to Linear Algebra my freshman year one day I spaced on the fact we had an exam. So, I put the textbook on the shelf under my desk, and then forgot to take it when I left. The book disappeared, of course, and the professor never heard of it being turned in to lost-and-found or anything. Fortunately the homework was handwritten questions passed out on photocopies (ask your parents), so I could still do the assignments, but for all those, you know, definitions and examples I had to rely on my own notes. I don’t know why I couldn’t ask a classmate. Shyness, probably. Came through all right, though.

Hugo: 'These math problems we got for homework are gonna be hard to do.' Tiger: 'Because you don't understand them?' Hugo: 'Because I brought home my history book by mistake.'
Bud Blake’s Tiger rerun for the 23rd of February, 2018. Whose house are they at? I mean, did Tiger bring his dog to Hugo’s, or did Hugo bring his homework to Tiger’s house? I guess either’s not that odd, especially if they just got out of school, but then Hugo’s fussing with his homework when he’s right out of school and with Tiger?

Cathy Law’s Claw for the 23rd technically qualifies as an anthropomorphic-numerals joke, in this panel about the smothering of education by the infection of guns into American culture.

Jim Meddick’s Monty for the 23rd has wealthy child Wedgwick unsatisfied with a mere ball of snow. He instead has a snow Truncated Icosahedron (the hyphens in Jarvis’s word balloon may baffle the innocent reader). This is a real shape, one that’s been known for a very long time. It’s one of the Archimedean Solids, a set of 13 solids that have convex shapes (no holes or indents or anything) and have all vertices the same, the identical number of edges coming in to each point in the same relative directions. The truncated icosahedron you maybe also know as the soccer ball shape, at least for those old-style soccer balls made of patches that were hexagons and pentagons. An actual truncated icosahedron needs twelve pentagons, so the figure drawn in the third panel isn’t quite right. At least one pentagonal face would be visible. But that’s also tricky to draw. The aerodynamics of a truncated icosahedron are surely different from those of a sphere. But in snowball-fight conditions, probably not different enough to even notice.

Mark Litzler’s Joe Vanilla for the 24th uses a blackboard full of formulas to represent an overcomplicated answer. The formulas look, offhand, like gibberish to me. But I’ll admit uncertainty since the odd capitalization of “iG(p)” at the start makes me think of some deeper group theory or knot theory symbols. And to see an “m + p” and an “m – p” makes me think of quantum mechanics of atomic orbitals. (But then an “m – p2” is weird.) So if this were anything I’d say it was some quantum chemistry formula. But my gut says if Litzler did take the blackboard symbols from anything, it was without going back to references. (Which he has no need to do, I should point out; the joke wouldn’t be any stronger — or weaker — if the blackboard meant anything.)

Reading the Comics, August 26, 2017: Dragon Edition


It’s another week where everything I have to talk about comes from GoComics.com. So, no pictures. The Comics Kingdom and the Creators.com strips are harder for non-subscribers to read so I feel better including those pictures. There’s not an overarching theme that I can fit to this week’s strips either, so I’m going to name it for the one that was most visually interesting to me.

Charlie Pondrebarac’s CowTown for the 22nd I just knew was a rerun. It turned up the 26th of August, 2015. Back then I described it as also “every graduate students’ thesis defense anxiety dream”. Now I wonder if I have the possessive apostrophe in the right place there. On reflection, if I have “every” there, then “graduate student” has to be singular. If I dropped the “every” then I could talk about “graduate students” in the plural and be sensible. I guess that’s all for a different blog to answer.

Mike Thompson’s Grand Avenue for the 22nd threatened to get me all cranky again, as Grandmom decided the kids needed to do arithmetic worksheets over the summer. The strip earned bad attention from me a few years ago when a week, maybe more, of the strip was focused on making sure the kids drudged their way through times tables. I grant it’s a true attitude that some people figure what kids need is to do a lot of arithmetic problems so they get better at arithmetic problems. But it’s hard enough to convince someone that arithmetic problems are worth doing, and to make them chores isn’t helping.

John Zakour and Scott Roberts’s Maria’s Day for the 22nd name-drops fractions as a worse challenge than dragon-slaying. I’m including it here for the cool partial picture of the fire-breathing dragon. Also I take a skeptical view of the value of slaying the dragons anyway. Have they given enough time for sanctions to work?

Maria’s Day pops back in the 24th. Needs more dragon-slaying.

Eric the Circle for the 24th, this one by Dennill, gets in here by throwing some casual talk about arcs around. That and π. The given formula looks like nonsense to me. \frac{pi}{180}\cdot 94 - sin 94\deg has parts that make sense. The first part will tell you what radian measure corresponds to 94 degrees, and that’s fine. Mathematicians will tend to look for radian measures rather than degrees for serious work. The sine of 94 degrees they might want to know. Subtracting the two? I don’t see the point. I dare to say this might be a bunch of silliness.

Cathy Law’s Claw for the 25th writes off another Powerball lottery loss as being bad at math and how it’s like algebra. Seeing algebra in lottery tickets is a kind of badness at mathematics, yes. It’s probability, after all. Merely playing can be defended mathematically, though, at least for the extremely large jackpots such as the Powerball had last week. If the payout is around 750 million dollars (as it was) and the chance of winning is about one in 250 million (close enough to true), then the expectation value of playing a ticket is about three dollars. If the ticket costs less than three dollars (and it does; I forget if it’s one or two dollars, but it’s certainly not three), then, on average you could expect to come out slightly ahead. Therefore it makes sense to play.

Except that, of course, it doesn’t make sense to play. On average you’ll lose the cost of the ticket. The on-average long-run you need to expect to come out ahead is millions of tickets deep. The chance of any ticket winning is about one in 250 million. You need to play a couple hundred million times to get a good enough chance of the jackpot for it to really be worth it. Therefore it makes no sense to play.

Mathematical logic therefore fails us: we can justify both playing and not playing. We must study lottery tickets as a different thing. They are (for the purposes of this) entertainment, something for a bit of disposable income. Are they worth the dollar or two per ticket? Did you have other plans for the money that would be more enjoyable? That’s not my ruling to make.

Samson’s Dark Side Of The Horse for the 25th just hurts my feelings. Why the harsh word, Samson? Anyway, it’s playing on the typographic similarity between 0 and O, and how we bunch digits together.

Grouping together three decimal digits as a block is as old, in the Western tradition, as decimal digits are. Leonardo of Pisa, in Liber Abbaci, groups the thousands and millions and thousands of millions and such together. By 1228 he had the idea to note this grouping with an arc above the set of digits, like a tie between notes on a sheet of music. This got cut down, part of the struggle in notation to write as little as possible. Johannes de Sacrobosco in 1256 proposed just putting a dot every third digit. In 1636 Thomas Blundeville put a | mark after every third digit. (I take all this, as ever, from Florian Cajori’s A History Of Mathematical Notations, because it’s got like everything in it.) We eventually settled on separating these stanzas of digits with a , or . mark. But that it should be three digits goes as far back as it could.

%d bloggers like this: