I got to thinking about Turing machines. This is the conceptual model for basically all computers. The classic concept is to imagine a string of cells. In each cell is some symbol. It’s gone over by some device that follows some rule about whether and how to change the symbol. We have other rules that let us move the machine from one cell to the next. This doesn’t sound like much. But it’s enough. We can imagine all software to be some sufficiently involved bit of work on a string of cells and changing (or not) the symbols in those cells.
We don’t normally do this, because it’s too much tedious work. But we know we could go back to this if we truly must. A proper Turing machine has infinitely many cells, which no actual computer does, owing to the high cost of memory chips and the limited electricity budget. We can pretend that “a large enough number of cells” is good enough; it often is. And it turns out any one Turing machine can be used to simulate another Turing machine. This requires us to not care about how long it takes to do something, but that’s all right. Conceptually, we don’t care.
And I specifically got wondering what was the first pinball machine to be a Turing machine. I’m sure that modern pinball machines are, since there have been computers of some kind in pinball machines since the mid-1970s. So that’s a boring question. My question is: were there earlier pinball machines that satisfy the requirements of a Turing machine?
My gut tells me there must be. This is mostly because it’s surprisingly hard not to create a Turing machine. If you hang around near mathematics or computer science people you’ll occasionally run across things like where someone created a computer inside a game like Minecraft. It’s possible to create a Turing machine using the elements of the game. The number of things that are Turing-complete, as they say, is surprising. CSS version 3, a rule system for how to dress up content on a web site, turns out to be Turing-complete (if you make some reasonable extra suppositions). Magic: The Gathering cards are, too. So you could set up a game of Magic: the Gathering which simulated a game of Minecraft which itself simulated the styling rules of a web page. Note the “you” in that sentence.
That’s not proof, though. But I feel pretty good about supposing that some must be. Pinball machines consist, at heart, of a bunch of switches which are activated or not by whether a ball rolls over them. They can store a bit of information: a ball can be locked in a scoop, or kicked out of the scoop as need be. Points can be tallied on the scoring reel. The number of balls a player gets to plunge can be increased — or decreased — based on things that happen on the playfield. This feels to me like it’s got to be a Turing-complete scheme.
So I suspect that the layout of a pinball game, and the various ways to store a bit of information, with (presumably) perfect ball-flipping and table-nudging skills, should make it possible to make a Turing machine. (There ought not be a human in the loop, but I’m supposing that we could replace the person with a mechanism that flips or nudges at the right times or when the ball is in the right place.) I’m wanting for proof, though, and I leave the question here to tease people who’re better than I am at this field of mathematics and computer science.
And I’m curious when the first game that was so capable was made. The very earliest games were like large tabletop versions of those disappointing car toys, the tiny transparent-plastic things with a ball bearing you shoot into one of a series of scoops. Eventually, tilt mechanisms were added, and scoring reels, and then flippers, and then the chance to lock balls. Each changed what the games could do. Did it reach the level of complexity I think it did? I’d like to know.
Yes, this means that I believe it would be theoretically possible to play a pinball game that itself simulated the Pinball Arcade program simulating another pinball game. If this prospect does not delight you then I do not know that we can hope to ever understand one another.