As teased with the Andertoons I featured Tuesday, there’s some mathematics comics slight enough I can’t write paragraphs about them. But people like seeing comics that at least say “mathematics”, so here’s your heads-up to them.

Mark Parisi’s Off The Mark for the 18th is an anthropomorphic numerals joke. The numerals in a paint-by-numbers kit are really serving the role of indices, rather than anything numerical. The instructions would be the same if, say, a letter ‘p’ or a small square represented purple.

Jerry Bittle’s Shirley and Son rerun for the 20th has a kid impressed with Mom’s arithmetic skills. This is the first time Shirley and Son has gotten mention in a Reading the Comics post, which is not such a surprise to me.

Gene Mora’s Graffiti for the 23rd is also a spot of wordplay mentioning geometry. And it comes back to the joke about one shape being a kind of another that New Adventures of Queen Victoria was on about.

This wraps up last week’s comics. I plan to return Reading the Comics posts to Sunday finally, to make room Tuesdays and either Thursdays or Fridays for the Fall 2019 Mathematics A To Z. I’ve decided what A and B are going to be, but there’s still time to nominate concepts for the letters C through H. Thank you.

I didn’t cover quite all of last week’s mathematics comics with Sunday’s essay. There were a handful that all ran on Saturday. And, as has become tradition, I’ll also list a couple that didn’t rate a couple paragraphs.

Rick Kirkman and Jerry Scott’s Baby Blues for the 23rd has a neat variation on story problems. Zoe’s given the assignment to make her own. I don’t remember getting this as homework, in elementary school, but it’s hard to see why I wouldn’t. It’s a great exercise: not just set up an arithmetic problem to solve, but a reason one would want to solve it.

Composing problems is a challenge. It’s a skill, and you might be surprised that when I was in grad school we didn’t get much training in it. We were just taken to be naturally aware of how to identify a skill one wanted to test, and to design a question that would mostly test that skill, and to write it out in a question that challenged students to identify what they were to do and how to do it, and why they might want to do it. But as a grad student I wasn’t being prepared to teach elementary school students, just undergraduates.

Mastroianni and Hart’s B.C. for the 23rd is a joke in the funny-definition category, this for “chaos theory”. Chaos theory formed as a mathematical field in the 60s and 70s, and it got popular alongside the fractal boom in the 80s. The field can be traced back to the 1890s, though, which is astounding. There was no way in the 1890s to do the millions of calculations needed to visualize any good chaos-theory problem. They had to develop results entirely by thinking.

Wiley’s definition is fine enough about certain systems being unpredictable. Wiley calls them “advanced”, although they don’t need to be that advanced. A compound pendulum — a solid rod that swings on the end of another swinging rod — can be chaotic. You can call that “advanced” if you want but then people are going to ask if you’ve had your mind blown by this post-singularity invention, the “screw”.

What makes for chaos is not randomness. Anyone knows the random is unpredictable in detail. That’s no insight. What’s exciting is when something’s unpredictable but deterministic. Here it’s useful to think of continental divides. These are the imaginary curves which mark the difference in where water runs. Pour a cup of water on one side of the line, and if it doesn’t evaporate, it eventually flows to the Pacific Ocean. Pour the cup of water on the other side, it eventually flows to the Atlantic Ocean. These divides are often wriggly things. Water may mostly flow downhill, but it has to go around a lot of hills.

So pour the water on that line. Where does it go? There’s no unpredictability in it. The water on one side of the line goes to one ocean, the water on the other side, to the other ocean. But where is the boundary? And that can be so wriggly, so crumpled up on itself, so twisted, that there’s no meaningfully saying. There’s just this zone where the Pacific Basin and the Atlantic Basin merge into one another. Any drop of water, however tiny, dropped in this zone lands on both sides. And that is chaos.

Neatly for my purposes there’s even a mountain at a great example of this boundary. Triple Divide Peak, in Montana, rests on the divides between the Atlantic and the Pacific basins, and also on the divide between the Atlantic and the Arctic oceans. (If one interprets the Hudson Bay as connecting to the Arctic rather than the Atlantic Ocean, anyway. If one takes Hudson Bay to be on the Atlantic Ocean, then Snow Dome, Alberta/British Columbia, is the triple point.) There’s a spot on this mountain (or the other one) where a spilled cup of water could go to any of three oceans.

John Graziano’s Ripley’s Believe It Or Not for the 23rd mentions one of those beloved bits of mathematics trivia, the birthday problem. That’s finding the probability that no two people in a group of some particular size will share a birthday. Or, equivalently, the probability that at least two people share some birthday. That’s not a specific day, mind you, just that some two people share a birthday. The version that usually draws attention is the relatively low number of people needed to get a 50% chance there’s some birthday pair. I haven’t seen the probability of 70 people having at least one birthday pair before. 99.9 percent seems plausible enough.

The birthday problem usually gets calculated something like this: Grant that one person has a birthday. That’s one day out of either 365 or 366, depending on whether we consider leap days. Consider a second person. There are 364 out of 365 chances that this person’s birthday is not the same as the first person’s. (Or 365 out of 366 chances. Doesn’t make a real difference.) Consider a third person. There are 363 out of 365 chances that this person’s birthday is going to be neither the first nor the second person’s. So the chance that all three have different birthdays is . Consider the fourth person. That person has 362 out of 365 chances to have a birthday none of the first three have claimed. So the chance that all four have different birthdays is . And so on. The chance that at least two people share a birthday is 1 minus the chance that no two people share a birthday.

As always happens there are some things being assumed here. Whether these probability calculations are right depends on those assumptions. The first assumption being made is independence: that no one person’s birthday affects when another person’s is likely to be. Obvious, you say? What if we have twins in the room? What if we’re talking about the birthday problem at a convention of twins and triplets? Or people who enjoyed the minor renown of being their city’s First Babies of the Year? (If you ever don’t like the result of a probability question, ask about the independence of events. Mathematicians like to assume independence, because it makes a lot of work easier. But assuming isn’t the same thing as having it.)

The second assumption is that birthdates are uniformly distributed. That is, that a person picked from a room is no more likely to be born the 13th of February than they are the 24th of September. And that is not quite so. September births are (in the United States) slightly more likely than other months, for example, which suggests certain activities going on around New Year’s. Across all months (again in the United States) birthdates of the 13th are slightly less likely than other days of the month. I imagine this has to be accounted for by people who are able to select a due date by inducing delivery. (Again if you need to attack a probability question you don’t like, ask about the uniformity of whatever random thing is in place. Mathematicians like to assume uniform randomness, because it akes a lot of work easier. But assuming it isn’t the same as proving it.)

Do these differences mess up the birthday problem results? Probably not that much. We are talking about slight variations from uniform distribution. But I’ll be watching Ripley’s to see if it says anything about births being more common in September, or less common on 13ths.

And now the comics I didn’t find worth discussing. They’re all reruns, it happens. Morrie Turner’s Wee Pals rerun for the 20th just mentions mathematics class. That could be any class that has tests coming up, though. Percy Crosby’s Skippy for the 21st is not quite the anthropomorphic numerals jokes for the week. It’s getting around that territory, though, as Skippy claims to have the manifestation of a zero. Bill Rechin’s Crock for the 22nd is a “pick any number” joke. I discussed as much as I could think of about this when it last appeared, in May of 2018. Also I’m surprised that Crock is rerunning strips that quickly now. It has, in principle, decades of strips to draw from.

Comic Strip Master Command decreed that this should be a slow week. The greatest bit of mathematical meat came at the start, with a Garfield that included a throwaway mathematical puzzle. It didn’t turn out the way I figured when I read the strip but didn’t actually try the puzzle.

Jim Davis’s Garfield for the 3rd is a mathematics cameo. Working out a problem is one more petty obstacle in Jon’s day. Working out a square root by hand is a pretty good tedious little problem to do. You can make an estimate of this that would be not too bad. 324 is between 100 and 400. This is worth observing because the square root of 100 is 10, and the square root of 400 is 20. The square of 16 is 256, which is easy for me to remember because this turns up in computer stuff a lot. But anyway, numbers from 300 to 400 have square roots that are pretty close to but a little less than 20. So expect a number between 17 and 20.

But after that? … Well, it depends whether 324 is a perfect square. If it is a perfect square, then it has to be the square of a two-digit number. The first digit has to be 1. And the last digit has to be an 8, because the square of the last digit is 4. But that’s if 324 is a perfect square, which it almost certainly is … wait, what? … Uh .. huh. Well, that foils where I was going with this, which was to look at a couple ways to do square roots.

One is to start looking at factors. If a number is equal to the product of two numbers, then its square root is the product of the square roots of those numbers. So dividing your suspect number 324 by, say, 4 is a great idea. The square root of 324 would be 2 times the square root of whatever 324 ÷ 4 is. Turns out that’s 81, and the square root of 81 is 9 and there we go, 18 by a completely different route.

So that works well too. If it had turned out the square root was something like then we get into tricky stuff. One response is to leave the answer like that: is exactly the square root of 328. But I can understand someone who feels like they could use a numerical approximation, so that they know whether this is bigger than 19 or not. There are a bunch of ways to numerically approximate square roots. Last year I worked out a way myself, one that needs only a table of trigonometric functions to work out. Tables of logarithms are also usable. And there are many methods, often using iterative techniques, in which you make ever-better approximations until you have one as good as your situation demands.

Anyway, I’m startled that the cheese doodles price turned out to be a perfect square (in cents). Of course, the comic strip can be written to have any price filled in there. The joke doesn’t depend on whether it’s easy or hard to take the square root of 324. But that does mean it was written so that the problem was surprisingly doable and I’m amused by that.

Ryan North’s Dinosaur Comics for the 4th goes in some odd directions. But it’s built on the wonder of big numbers. We don’t have much of a sense for how big truly large numbers. We can approach pieces of that, such as by noticing that a billion seconds is a bit more than thirty years. But there are a lot of truly staggeringly large numbers out there. Our basic units for things like distance and mass and quantity are designed for everyday, tabletop measurements. The numbers don’t get outrageously large. Had they threatened to, we’d have set the length of a meter to be something different. We need to look at the cosmos or at the quantum to see things that need numbers like a sextillion. Or we need to look at combinations and permutations of things, but that’s extremely hard to do.

Tom Horacek’s Foolish Mortals for the 4th is a marginal inclusion for this week’s strips, but it’s a low-volume week. The intended joke is just showing off a “tube sock” and an “inner tube sock”. But it happens to depict these as a cylinder and a torus and those are some fun shapes to play with. Particularly, consider this: it’s easy to go from a flat surface to a cylinder. You know this because you can roll a piece of paper up and get a good tube. And it’s not hard to imagine going from a cylinder to a torus. You need the cylinder to have a good bit of give, but it’s easy to imagine stretching it around and taping one end to the other. But now you’ve got a shape that is very different from a sheet of paper. The four-color map theorem, for example, no longer holds. You can divide the surface of the torus so it needs at least seven colors.

Mastroianni and Hart’s B.C. for the 5th is a bit of wordplay. As I said, this was a low-volume week around here. The word “logarithm” derives, I’m told, from the modern-Latin ‘logarithmus’. John Napier, who advanced most of the idea of logarithms, coined the term. It derives from ‘logos’, here meaning ‘ratio’, and ‘re-arithmos’, meaning ‘counting number’. The connection between ratios and logarithms might not seem obvious. But suppose you have a couple of numbers, and we’ll reach deep into the set of possible names and call them a, b, and c. Suppose a ÷ b equals b ÷ c. Then the difference between the logarithm of a and the logarithm of b is the same as the difference between the logarithm of b and the logarithm of c. This lets us change calculations on numbers to calculations on the ratios between numbers and this turns out to often be easier work. Once you’ve found the logarithms. That can be tricky, but there are always ways to do it.

Bill Rechin’s Crock for the 8th is not quite a bit of wordplay. But it mentions fractions, which seem to reliably confuse people. Otis’s father is helpless to present a concrete, specific example of what fractions mean. I’d probably go with change, or with slices of pizza or cake. Something common enough in a child’s life.

These are all the mathematically-themed comic strips for the past week. Next Sunday, I hope, I’ll have more. Meanwhile please come around here this week to see what, if anything, I think to write about.

Yeah, so remember how like two weeks ago I noticed another Randolph Itch, 2 am repeat? And figured to retire the comic strip from my Reading the Comics routine? Well, then you’re better at this blog than I am. But this time I’ll retire it for sure, rather than waste text I wrote up already.

Tom Toles’s Randolph Itch, 2 am for the 13th is the Roman Numerals joke for the week. IV is a well-established way to write four, although on clock faces IIII is a quite common use. There’s not a really clear reason why this should be. I’m convinced that it’s mostly for reasons of symmetry. IIII comes nearer the length of VIII, across it on the clock face. The subtractive principle, where ‘IV’ means ‘one taken away from five’, wasn’t really a thing until the middle ages. But then neither were clocks like that.

Bill Rechin’s Crock for the 14th is a joke about being bad at arithmetic. And yeah, most instructors wouldn’t accept “a lot” as the answer to 125 times 140. But we can go from approximations to something more precise. The number’s got to be more than 10,000, for example. 125 is more than 100, and 140 is more than 100. So 125 times 140 has to be more than 100 times 100. And then I notice: 125 is a hundred plus a quarter-of-a-hundred. So, 125 times 140 is a hundred times 140 plus a quarter-of-a-hundred times 140. A hundred times 140 is easy: it’s 14,000. A quarter of that? … Is a quarter of 12,000 plus a quarter of 2,000. That’s 3,000 plus 500. So 125 times 140 has to be 14,000 plus 3,000 plus 500. 17,500. My calculator agrees, so I feel pretty good. If this all seems like an ad hoc process, well, it is. But it’s how I can do this in my head.

Yes, the comments at ComicsKingdom include a warning that “using this obscenity called new math he may never be right, but he will never be wrong either”. I mention this for fans of cranky old person comics commentary.

Ted Shearer’s Quincy for the 21st of July, 1979 was rerun the 14th. It expresses the then-common wish for a calculator, which held such promise for making mathematics easy. It does make some kinds of mathematics easy. It especially takes considerable tedium out of mathematics. And it opens up new things to discover. Especially if the calculator lets you put the last thing calculated into a formula. That makes it easy to play with all sorts of iterative processes. They let you find solutions to weird and complicated problems. Or explore beautiful fractals. Figure out what limits work like. Or just notice what’s neat about 3.302775638. They let you get into different things.

Daniel Shelton’s Ben for the 14th has Nicholas doing mathematics homework. And something that couldn’t just be any subject; arranging fractions by size is something worth learning. They do have the peculiar and hard-to-adjust-to property that making the denominator larger, without changing the numerator, makes the entire fraction represent a smaller number. I mean a number closer to zero. So I think sorting fractions a reasonable homework project. Cutting them out and pasting them down seems weird to me. But maybe there’s some benefit in making the project tactile like that.

There are times I feel like my writing here collapses entirely to Reading the Comics posts. It’s a temptation to just give up doing anything else. They’re easy to write, since the comics give me the subjects to discuss. And it offers a nice, accessible mix of same-old topics with the occasional oddball. It’s fun. But sometimes Comic Strip Master Command decides I’ve been doing enough of that. This is one of those weeks; I only found six comics in my normal reading that were on point enough to discuss. So here’s half of them.

Bill Rechin’s Crock for the 6th is … hm. Well, let’s call it a fractions joke. I’m curious exactly what the clerk’s joke is supposed to mean. Is it intended to suggest an impossibility, putting into something far more than it can hold? Or is it just meant to suggest gross overabundance? And deep down I suspect Rechin didn’t have any specific meaning; it’s just a good-sounding insult.

Hector D Cantu and Carlos Castellanos’s Baldo for the 7th is … hm. Well, let’s call it a wordplay joke. It works by “strength” having multiple meanings, and “numbers” having multiple meanings. And there being a convenient saying to link one to the other. If this were a busier week I wouldn’t even bring it up, but I hate going without anything around here.

Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 8th is … hm. Well, let’s call it a Roman numerals joke. It’s really more wordplay. And one I like, although the pacing is off. The second panel could be usefully dropped, and you could probably redo this all in two panels — or one — to better effect.

They’ve been phasing Roman Numerals out for a long while. Arabic numerals got their grand introduction to the (Western) Roman Empire’s territories in 1202 by Leonardo of Pisa, known now as “Fibonacci”. His Liber Abaci (Book of Calculation) laid out the Arabic numerals scheme and place values, and how to use them. By 1228 he published an edition comparing Roman numerals to Arabic numerals.

This wasn’t the first anyone in western Europe had heard of them, mind. (It never is; anyone telling you anything was the first is simplifying.) Spanish monks in the 10th century studied Arabic texts, and wrote about what they found. But after Leonardo of Pisa, Arabic numerals started displacing Roman numerals at least in specialized trades. Florence, in what is now Italy, prohibited merchants from using Arabic numerals in 1299; they could use Roman numerals or write them out in words. This, presumably, to prevent cheating by use of strange, unfamiliar calculus. Arabic numerals escaped being tools of specialists in the 16th century, thanks in large part to the German mathematician Adam Ries, who explained the scheme in terms apprentices could understand.

Still, these days, a Roman numeral is mostly an affectation. Useful for bit of style; not for serious mathematics. Good for watches.

I should have got to this yesterday; I don’t know. Something happened. Should be back to normal Sunday.

Bill Rechin’s Crock rerun for the 26th of April does a joke about picking-the-number-in-my-head. There’s more clearly psychological than mathematical content in the strip. It shows off something about what people understand numbers to be, though. It’s easy to imagine someone asked to pick a number choosing “9”. It’s hard to imagine them picking “4,796,034,621,322”, even though that’s just as legitimate a number. It’s possible someone might pick π, or e, but only if that person’s a particular streak of nerd. They’re not going to pick the square root of eleven, or negative eight, or so. There’s thing that are numbers that a person just, offhand, doesn’t think of as numbers.

Mark Anderson’s Andertoons for the 26th sees Wavehead ask about “borrowing” in subtraction. It’s a riff on some of the terminology. Wavehead’s reading too much into the term, naturally. But there are things someone can reasonably be confused about. To say that we are “borrowing” ten does suggest we plan to return it, for example, and we never do that. I’m not sure there is a better term for this turning a digit in one column to adding ten to the column next to it, though. But I admit I’m far out of touch with current thinking in teaching subtraction.

Greg Cravens’s The Buckets for the 26th is kind of a practical probability question. And psychology also, since most of the time we don’t put shirts on wrong. Granted there might be four ways to put a shirt on. You can put it on forwards or backwards, you can put it on right-side-out or inside-out. But there are shirts that are harder to mistake. Collars or a cut around the neck that aren’t symmetric front-to-back make it harder to mistake. Care tags make the inside-out mistake harder to make. We still manage it, but the chance of putting a shirt on wrong is a lot lower than the 75% chance we might naively expect. (New comic tag, by the way.)

Charles Schulz’s Peanuts rerun for the 27th is surely set in mathematics class. The publication date interests me. I’m curious if this is the first time a Peanuts kid has flailed around and guessed “the answer is twelve!” Guessing the answer is twelve would be a Peppermint Patty specialty. But it has to start somewhere.

Knowing nothing about the problem, if I did get the information that my first guess of 12 was wrong, yeah, I’d go looking for 6 or 4 as next guesses, and 12 or 48 after that. When I make an arithmetic mistake, it’s often multiplying or dividing by the wrong number. And 12 has so many factors that they’re good places to look. Subtracting a number instead of adding, or vice-versa, is also common. But there’s nothing in 12 by itself to suggest another place to look, if the addition or subtraction went wrong. It would be in the question which, of course, doesn’t exist.

Maria Scrivan’s Half-Full for the 28th is the Venn Diagram joke for this week. It could include an extra circle for bloggers looking for content they don’t need to feel inspired to write. This one isn’t a new comics tag, which surprises me.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 28th uses the M&oum;bius Strip. It’s an example of a surface that you could just go along forever. There’s nothing topologically special about the M&oum;bius Strip in this regard, though. The mathematician would have as infinitely “long” a résumé if she tied it into a simple cylindrical loop. But the M&oum;bius Strip sounds more exotic, not to mention funnier. Can’t blame anyone going for that instead.

The most interesting mathematically-themed comic strips from last week were also reruns. So be it; at least I have an excuse to show a 1931-vintage comic. Also, after discovering my old theme didn’t show the category of essay I was posting, I did literally minutes of search for a new theme that did. And that showed tags. And that didn’t put a weird color behind LaTeX inline equations. So I’m using the same theme as my humor blog does, albeit with a different typeface, and we’ll hope that means I don’t post stuff to the wrong blog. As it is I start posting something to the wrong place about once every twenty times. All I want is a WordPress theme with all the good traits of the themes I look at and none of the drawbacks; why is that so hard to get?

Elzie Segar’s Thimble Theatre rerun for the 5th originally ran the 25th of April, 1931. It’s just a joke about Popeye not being good at bookkeeping. In the story, Popeye’s taking the $50,000 reward from his last adventure and opened a One-Way Bank, giving people whatever money they say they need. And now you understand how the first panel of the last row has several jokes in it. The strip is partly a joke about Popeye being better with stuff he can hit than anything else, of course. I wonder if there’s an old stereotype of sailors being bad at arithmetic. I remember reading about pirate crews that, for example, not-as-canny-as-they-think sailors would demand a fortieth or a fiftieth of the prizes as their pay, instead of a mere thirtieth. But it’s so hard to tell what really happened and what’s just a story about the stupidity of people. Marginal? Maybe, but I’m a Popeye fan and this is my blog, so there.

Norm Feuti’s Gil rerun for the 6th is a subverted word problem joke. And it’s a reminder of how hard story problems can be. You need something that has a mathematics question on point. And the question has to be framed as asking something someone would actually care to learn. Plus the story has to make sense. Much easier when you’re teaching calculus, I think.

Gary Wise and Lance Aldrich’s Real Life Adventures for the 6th is a parent-can’t-help-with-homework joke, done with arithmetic since it’s hard to figure another subject that would make the joke possible. I suppose a spelling assignment could be made to work. But that would be hard to write so it didn’t seem contrived.

Thaves’ Frank and Ernest for the 7thfeels like it’s a riff on the old saw about Plato’s Academy. (The young royal sent home with a coin because he asked what the use of this instruction was, and since he must get something from everything, here’s his drachma.) Maybe. Or it’s just the joke that you make if you have “division” and “royals” in mind.

Mark Tatulli’s Lio for the 7th is not quite the anthropomorphic symbols joke for this past week. It’s circling that territory, though.

And now to wrap up last week’s mathematically-themed comic strips. It’s not a set that let me get into any really deep topics however hard I tried overthinking it. Maybe something will turn up for Sunday.

Mason Mastroianni, Mick Mastroianni, and Perri Hart’s B.C. for the 7th tries setting arithmetic versus celebrity trivia. It’s for the old joke about what everyone should know versus what everyone does know. One might question whether Kardashian pet eating habits are actually things everyone knows. But the joke needs some hyperbole in it to have any vitality and that’s the only available spot for it. It’s easy also to rate stuff like arithmetic as trivia since, you know, calculators. But it is worth knowing that seven squared is pretty close to 50. It comes up when you do a lot of estimates of calculations in your head. The square root of 10 is pretty near 3. The square root of 50 is near 7. The cube root of 10 is a little more than 2. The cube root of 50 a little more than three and a half. The cube root of 100 is a little more than four and a half. When you see ways to rewrite a calculation in estimates like this, suddenly, a lot of amazing tricks become possible.

Leigh Rubin’s Rubes for the 7th is a “mathematics in the real world” joke. It could be done with any mythological animals, although I suppose unicorns have the advantage of being relatively easy to draw recognizably. Mermaids would do well too. Dragons would also read well, but they’re more complicated to draw.

Mark Pett’s Mr Lowe rerun for the 8th has the kid resisting the mathematics book. Quentin’s grounds are that how can he know a dated book is still relevant. There’s truth to Quentin’s excuse. A mathematical truth may be universal. Whether we find it interesting is a matter of culture and even fashion. There are many ways to present any fact, and the question of why we want to know this fact has as many potential answers as it has people pondering the question.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 8th is a paean to one of the joys of numbers. There is something wonderful in counting, in measuring, in tracking. I suspect it’s nearly universal. We see it reflected in people passing around, say, the number of rivets used in the Chrysler Building or how long a person’s nervous system would reach if stretched out into a line or ever-more-fanciful measures of stuff. Is it properly mathematics? It’s delightful, isn’t that enough?

Scott Hilburn’s The Argyle Sweater for the 10th is a Fibonacci Sequence joke. That’s a good one for taping to the walls of a mathematics teacher’s office.

Bill Rechin’s Crock rerun for the 11th is a name-drop of mathematics. Really anybody’s homework would be sufficiently boring for the joke. But I suppose mathematics adds the connotation that whatever you’re working on hasn’t got a human story behind it, the way English or History might, and that it hasn’t got the potential to eat, explode, or knock a steel ball into you the way Biology, Chemistry, or Physics have. Fair enough.