## Reading the Comics, February 3, 2020: Fake Venn Diagrams and Real Reruns Edition

Besides kids doing homework there were a good ten or so comic strips with enough mathematical content for me to discuss. So let me split that over a couple of days; I don’t have the time to do them all in one big essay.

Sandra Bell-Lundy’s Between Friends for the 2nd is declared to be a Venn Diagram joke. As longtime readers of these columns know, it’s actually an Euler Diagram: a Venn Diagram requires some area of overlap between all combinations of the various sets. Two circles that never touch, or as these two do touch at a point, don’t count. They do qualify as Euler Diagrams, which have looser construction requirements. But everything’s named for Euler, so that’s a less clear identifier.

John Kovaleski’s Daddy Daze for the 2nd talks about probability. Particularly about the probability of guessing someone’s birthday. This is going to be about one chance in 365, or 366 in leap years. Birthdays are not perfectly uniformly distributed through the year. The 13th is less likely than other days in the month for someone to be born; this surely reflects a reluctance to induce birth on an unlucky day. Births are marginally more likely in September than in other months of the year; this surely reflects something having people in a merry-making mood in December. These are tiny effects, though, and to guess any day has about one chance in 365 of being someone’s birthday will be close enough.

If the child does this long enough there’s almost sure to be a match of person and birthday. It’s not guaranteed in the first 365 cards given out, or even the first 730, or more. But, if the birthdays of passers-by are independent — one pedestrian’s birthday has nothing to do with the next’s — then, overall, about one-365th of all cards will go to someone whose birthday it is. (This also supposes that we won’t see things like the person picked saying that while it’s not their birthday, it is their friend’s, here.) This, the Law of Large Numbers, one of the cornerstones of probability, guarantees us.

Mark Anderson’s Andertoons for the 2nd is the Mark Anderson’s Andertoons for the week. And it’s a Venn Diagram joke, at least if the two circles are “really” there. Diplopia is what most of us would call double vision, seeing multiple offset copies of a thing. So the Venn diagram might be an optical illusion on the part of the businessman and the reader.

Brian Boychuk and Ron Boychuk’s Chuckle Brothers for the 3rd is not quite the anthropomorphic numerals joke of the week. At least, it’s built on manifesting numerals and doing things with them.

Dave Blazek’s Loose Parts for the 3rd is an anthropomorphic mathematical symbols joke. I suppose it’s algebraic symbols. We usually get to see the ‘x’ and ‘y’ axes in (high school) algebra, used to differentiate two orthogonal axes. The axes can be named anything. If ‘x’ and ‘y’ won’t do, we might move to using $\hat{i}$ and $\hat{j}$. In linear algebra, when we might want to think about Euclidean spaces with possibly enormously many dimensions, we may change the names to $\hat{e}_1$ and $\hat{e}_2$. (We could use subscripts of 0 and 1, although I do not remember ever seeing someone do that.)

Morrie Turner’s Wee Pals for the 3rd is a repeat, of course. Turner died several years ago and no one continued the strip. But it is also a repeat that I have discussed in these essays before, which likely makes this a good reason to drop Wee Pals from my regular reading here. There are 42 distinct ways to add (positive) whole numbers up to make ten, when you remember that you can add three or four or even six numbers together to do it. The study of how many different ways to make the same sum is a problem of partitioning. This might not seem very interesting, but if you try to guess how many ways there are to add up to 9 or 11 or 15, you’ll notice it’s a harder problem than it appears.

And for all that, there’s still some more comic strips to review. I will probably slot those in to Sunday, and start taking care of this current week’s comic strips on … probably Tuesday. Please check in at this link Sunday, and Tuesday, and we’ll see what I do.

## Reading the Comics, September 29, 2019: September 29, 2019 Edition

Several of the mathematically-themed comic strips from last week featured the fine art of calculation. So that was set to be my title for this week. Then I realized that all the comics worth some detailed mention were published last Sunday, and I do like essays that are entirely one-day affairs. There are a couple of other comic strips that mentioned mathematics tangentially and I’ll list those later this week.

John Hambrock’s The Brilliant Mind of Edison lee for the 29th has Edison show off an organic computer. This is a person, naturally enough. Everyone can do some arithmetic in their heads, especially if we allow that sometimes approximate answers are often fine. People with good speed and precision have always been wonders, though. The setup may also riff on the ancient joke of mathematicians being ways to turn coffee into theorems. (I would imagine that Hambrock has heard that joke. But it is enough to suppose that he’s aware many adult humans drink coffee.)

John Kovaleski’s Daddy Daze for the 29th sees Paul, the dad, working out the calculations his son (Angus) proposed. It’s a good bit of arithmetic that Paul’s doing in his head. The process of multiplying an insubstantial thing by many, many times until you get something of moderate size happens all the time. Much of integral calculus is based on the idea that we can add together infinitely many infinitesimal numbers, and from that get something understandable on the human scale. Saving nine seconds every other day is useless for actual activities, though. You need a certain fungibility in the thing conserved for the bother to be worth it.

Dan Thompson’s Harley for the 29th gets us into some comic strips not drawn by people named John. The comic has some mathematics in it qualitatively. The observation that you could jump a motorcycle farther, or higher, with more energy, and that you can get energy from rolling downhill. It’s here mostly because of the good fortune that another comic strip did a joke on the same topic, and did it quantitatively. That comic?

Bill Amend’s FoxTrot for the 29th. Young prodigies Jason and Marcus are putting serious calculation into their Hot Wheels track and working out the biggest loop-the-loop possible from a starting point. Their calculations are right, of course. Bill Amend, who’d been a physics major, likes putting authentic mathematics and mathematical physics in. The key is making sure the car moves fast enough in the loop that it stays on the track. This means the car experiencing a centrifugal force that’s larger than that of gravity. The centrifugal force on something moving in a circle is proportional to the square of the thing’s speed, and inversely proportional to the radius of the circle. This for a circle in any direction, by the way.

So they need to know, if the car starts at the height A, how fast will it go at the top of the loop, at height B? If the car’s going fast enough at height B to stay on the track, it’s certainly going fast enough to stay on for the rest of the loop.

The hard part would be figuring the speed at height B. Or it would be hard if we tried calculating the forces, and thus acceleration, of the car along the track. This would be a tedious problem. It would depend on the exact path of the track, for example. And it would be a long integration problem, which is trouble. There aren’t many integrals we can actually calculate directly. Most of the interesting ones we have to do numerically or work on approximations of the actual thing. This is all right, though. We don’t have to do that integral. We can look at potential energy instead. This turns what would be a tedious problem into the first three lines of work. And one of those was “Kinetic Energy = Δ Potential Energy”.

But as Peter observes, this does depend on supposing the track is frictionless. We always do this in basic physics problems. Friction is hard. It does depend on the exact path one follows, for example. And it depends on speed in complicated ways. We can make approximations to allow for friction losses, often based in experiment. Or try to make the problem one that has less friction, as Jason and Marcus are trying to do.

Jeffrey Caulfield and Alexandre Rouillard’s Mustard and Boloney for the 29th is the anthropomorphic numerals joke for the week. This is a slight joke to include here. But there were many comic strips of slight mathematical content. I intend to list them in an essay on Wednesday.

Tuesday I plan to be a day for the Fall 2019 A-to-Z. Again, thank you for reading.