## Reading the Comics, October 7, 2014: Repeated Comics Edition

Since my last roundup of mathematics-themed comic strips there’s been a modest drizzle of new ones, and I’m not sure that I can find any particular themes to them, except that Zach Weinersmith and the artistic collective behind Eric the Circle apparently like my attention. Well, what the heck; that’s easy enough to give.

Zach Weinersmith’s Saturday Morning Breakfast Cereal (September 29) hopes to be that guy who appears somewhere around the fourth comment of every news article ever that mentions a correlation being found between two quantities. A lot of what’s valuable about science is finding causal links between things, but it’s only in rare and, often, rather artificial circumstances that such links are easy to show. What’s more often necessary is showing that as one quantity changes so does another, which allows one to suspect a link. Then, typically, one would look for a plausible reason they might have anything to do with one another, and look for ways to experiment and prove whether there is or is not.

But just because there is a correlation doesn’t by itself mean that one thing necessarily has anything to do with another. They could be coincidence, for example, or they could be influenced by some other confounding factor. To be worth mention in a decent journal, a correlation is probably going to be strong enough that it’s hard to believe it’s just coincidence, but there could yet be some confounding factor. And even if there is a causal link, in the complicated mess that is reality it can be difficult to discern which way the link flows. This is summarized in deductive logic by saying that correlation does not imply causation, but that uses deductive logic’s definition of “imply”.

In deductive logic to say “this implies that” means it is impossible for “this” to be true and “that” false simultaneously. It is perfectly permissible for both “this” and “that” to be true, and permissible for “this” to be false and “that” false, and — this is the point where Intro to Logic students typically crash — permissible for “this” to be false and “that” true. Colloquially, though, “imply” has a different connotation, something more along the lines of “this” and “that” have to both be false or both be true together. Don’t make that mistake on your logic test.

When a logician says that correlation does not imply causation, she is saying that it is imaginable for the correlation to be true while the causation is false. She is not saying the causation is false; she is just saying that the case is not proved from the fact of a correlation being true. And that’s so; if we just knew two things were correlated we would have to experiment to find whether there is a causal link. But finding a correlation one of the ways to start finding casual links; it’d be obviously daft not to use them as the start of one’s search. Anyway, that guy in about the fourth comment of every news report about a correlation just wants you to know it’s very important he tell you he’s smarter than journalists.

Saturday Morning Breakfast Cereal pops back up again (October 1) with an easier-to-describe joke about August Ferdinand Möbius and his rather famous strip, here applied to the old gag about walking to school uphill both ways. One hates to be a spoilsport, but Möbius was educated at home until 13, so this comic is not reliable as a shorthand biography of the renowned mathematician.

Eric the Circle has had a couple strips by “Griffinetsabine”, one on October 3, and another on the 7th of October, based on the Shape Singles Bar. Both strips are jokes about two points connecting by a line, suggesting that Griffinetsabine knew the premise was good for a couple of variants. I’d have spaced out the publication of them farther but perhaps this was the best that could be done.

Mikael Wulff and Anders Morgenthaler’s Truth Facts (September 30) — a panel strip that’s often engaging in showing comic charts — gives a guide to what the number of digits you’ve memorized says about you. (For what it’s worth, I peter out at “897932”.) I’m mildly delighted to find that their marker for Isaac Newton is more or less correct: Newton did work out pi to fifteen decimal places, by using his binomial theorem and a calculation of the area within a particular wedge of the circle. (As I make it out Wulff and Morgenthaler put Newton at fourteen decimal points, but they might have read references to Newton working out “fifteen decimal points” as meaning something different to what I do.) Newton’s was not the best calculation of pi in the 1660s when he worked it out — Christoph Grienberger, an Austrian Jesuit astronomer, had calculated 38 decimal places a generation earlier — but I can’t blame Wulff and Morgenthaler for supposing Newton to be a more recognizable name than Grienberger. I imagine if Einstein or Stephen Hawking had done any particularly unique work in calculating the digits of pi they’d have appeared on the chart too.

John Graziano’s Ripley’s Believe It or Not (October 1) — and don’t tell me that attribution doesn’t look weird — shares a story about the followers of the Ancient Greek mathematician, philosopher, and mystic Pythagoras, that they were forbidden to wear wool, eat beans, or pick up things they had dropped. I have heard the beans thing before and I think I’ve heard the wool prohibition before, but I don’t remember hearing about them not being able to pick up things before.

I’m not sure I can believe it, though: Pythagoras was a strange fellow, so far as the historical record is clear. It’s hard to be sure just what is true about him and his followers, though, and what is made up, either out of devoted followers building up the figure they admire or out of critics making fun of a strange fellow with his own little cult. Perhaps it’s so, perhaps it’s not. I would like to see a primary source, and I don’t think any exist.

Otto Soglow’s The Little King (October 5; originally run February 29, 1948) provides its normal gentle, genial humor in the Little King working his way around the problem of doing a figure 8.

## Next In A Continuing Series

For today’s entry in the popular “I suppose everybody heard about this already like five years ago but I just found out about it now”, there’s the Online Encyclopedia of Integer Sequences, which is a half-century-old database (!) of various commonly appearing sequences of integers. It started, apparently, when Neil J A Sloane (a graduate student at Cornell University) needed to know the next terms in a sequence describing a particular property of trees, and he couldn’t find a way to look it up and so we got what I imagine to be that wonderful blend of frustration (“it should be easy to find this”) and procrastination (“surely having this settled once and for all will speed my dissertation”) that produces great things.

It’s even got a search engine, so that if you have the start of a sequence — say, “1, 4, 5, 16, 17, 20, 21” — it can find whether there’s any noteworthy sequences which begin that way and even give you a formula for finding successive terms, programming code for the terms, places in the literature where it might have appeared, and other neat little bits.

This isn’t foolproof, of course. Deductive logic will tell you that just because you know the first (say) ten terms in a sequence you don’t actually know what the eleventh will be. There are literally infinitely many possible successors. However, we’re not looking for deductive inevitability with this sort of search engine. We’re supposing that our sequence starts off describing some pattern that can be described by some rule that looks simple and attractive to human eyes. (So maybe my example doesn’t quite qualify, though their name for it makes it sound pretty nice.) There’s bits of whimsy (see the first link I posted), and chances to discover stuff I never heard of before (eg, the Wilson Primes: the encyclopedia says it’s believed there are infinitely many of them, but only three are known — 5, 13, and 563, with the next term unknown but certainly larger than 20,000,000,000,000), and plenty of stuff about poker and calendars.

Anyway, it’s got that appeal of a good reference tome in that you can just wander around it all afternoon and keep finding stuff that makes you say “huh”. (There’s a thing called Canada Perfect Numbers, but there are only four of them.)

On the title: some may protest, correctly, that a sequence and a series are very different things. They are correct: mathematically, a sequence is just a string of numbers, while a series is the sum of the terms in a sequence, and so is a single number. It doesn’t matter. Titles obey a logic of their own.