The Summer 2017 Mathematics A To Z: Topology


Today’s glossary entry comes from Elke Stangl, author of the Elkemental Force blog. I’ll do my best, although it would have made my essay a bit easier if I’d had the chance to do another topic first. We’ll get there.

Summer 2017 Mathematics A to Z, featuring a coati (it's kind of the Latin American raccoon) looking over alphabet blocks, with a lot of equations in the background.
Art courtesy of Thomas K Dye, creator of the web comic Newshounds. He has a Patreon for those able to support his work. He’s also open for commissions, starting from US$10.

Topology.

Start with a universe. Nice thing to have around. Call it ‘M’. I’ll get to why that name.

I’ve talked a fair bit about weird mathematical objects that need some bundle of traits to be interesting. So this will change the pace some. Here, I request only that the universe have a concept of “sets”. OK, that carries a little baggage along with it. We have to have intersections and unions. Those come about from having pairs of sets. The intersection of two sets is all the things that are in both sets simultaneously. The union of two sets is all the things that are in one set, or the other, or both simultaneously. But it’s hard to think of something that could have sets that couldn’t have intersections and unions.

So from your universe ‘M’ create a new collection of things. Call it ‘T’. I’ll get to why that name. But if you’ve formed a guess about why, then you know. So I suppose I don’t need to say why, now. ‘T’ is a collection of subsets of ‘M’. Now let’s suppose these four things are true.

First. ‘M’ is one of the sets in ‘T’.

Second. The empty set ∅ (which has nothing at all in it) is one of the sets in ‘T’.

Third. Whenever two sets are in ‘T’, their intersection is also in ‘T’.

Fourth. Whenever two (or more) sets are in ‘T’, their union is also in ‘T’.

Got all that? I imagine a lot of shrugging and head-nodding out there. So let’s take that. Your universe ‘M’ and your collection of sets ‘T’ are a topology. And that’s that.

Yeah, that’s never that. Let me put in some more text. Suppose we have a universe that consists of two symbols, say, ‘a’ and ‘b’. There’s four distinct topologies you can make of that. Take the universe plus the collection of sets {∅}, {a}, {b}, and {a, b}. That’s a topology. Try it out. That’s the first collection you would probably think of.

Here’s another collection. Take this two-thing universe and the collection of sets {∅}, {a}, and {a, b}. That’s another topology and you might want to double-check that. Or there’s this one: the universe and the collection of sets {∅}, {b}, and {a, b}. Last one: the universe and the collection of sets {∅} and {a, b} and nothing else. That one barely looks legitimate, but it is. Not a topology: the universe and the collection of sets {∅}, {a}, and {b}.

The number of toplogies grows surprisingly with the number of things in the universe. Like, if we had three symbols, ‘a’, ‘b’, and ‘c’, there would be 29 possible topologies. The universe of the three symbols and the collection of sets {∅}, {a}, {b, c}, and {a, b, c}, for example, would be a topology. But the universe and the collection of sets {∅}, {a}, {b}, {c}, and {a, b, c} would not. It’s a good thing to ponder if you need something to occupy your mind while awake in bed.

With four symbols, there’s 355 possibilities. Good luck working those all out before you fall asleep. Five symbols have 6,942 possibilities. You realize this doesn’t look like any expected sequence. After ‘4’ the count of topologies isn’t anything obvious like “two to the number of symbols” or “the number of symbols factorial” or something.

Are you getting ready to call me on being inconsistent? In the past I’ve talked about topology as studying what we can know about geometry without involving the idea of distance. How’s that got anything to do with this fiddling about with sets and intersections and stuff?

So now we come to that name ‘M’, and what it’s finally mnemonic for. I have to touch on something Elke Stangl hoped I’d write about, but a letter someone else bid on first. That would be a manifold. I come from an applied-mathematics background so I’m not sure I ever got a proper introduction to manifolds. They appeared one day in the background of some talk about physics problems. I think they were introduced as “it’s a space that works like normal space”, and that was it. We were supposed to pretend we had always known about them. (I’m translating. What we were actually told would be that it “works like R3”. That’s how mathematicians say “like normal space”.) That was all we needed.

Properly, a manifold is … eh. It’s something that works kind of like normal space. That is, it’s a set, something that can be a universe. And it has to be something we can define “open sets” on. The open sets for the manifold follow the rules I gave for a topology above. You can make a collection of these open sets. And the empty set has to be in that collection. So does the whole universe. The intersection of two open sets in that collection is itself in that collection. The union of open sets in that collection is in that collection. If all that’s true, then we have a manifold.

And now the piece that makes every pop mathematics article about topology talk about doughnuts and coffee cups. It’s possible that two topologies might be homeomorphic to each other. “Homeomorphic” is a term of art. But you understand it if you remember that “morph” means shape, and suspect that “homeo” is probably close to “homogenous”. Two things being homeomorphic means you can match their parts up. In the matching there’s nothing left over in the first thing or the second. And the relations between the parts of the first thing are the same as the relations between the parts of the second thing.

So. Imagine the snippet of the number line for the numbers larger than -π and smaller than π. Think of all the open sets you can use to cover that. It will have a set like “the numbers bigger than 0 and less than 1”. A set like “the numbers bigger than -π and smaller than 2.1”. A set like “the numbers bigger than 0.01 and smaller than 0.011”. And so on.

Now imagine the points that exist on a circle, if you’ve omitted one point. Let’s say it’s the unit circle, centered on the origin, and that what we’re leaving out is the point that’s exactly to the left of the origin. The open sets for this are the arcs that cover some part of this punctured circle. There’s the arc that corresponds to the angles from 0 to 1 radian measure. There’s the arc that corresponds to the angles from -π to 2.1 radians. There’s the arc that corresponds to the angles from 0.01 to 0.011 radians. You see where this is going. You see why I say we can match those sets on the number line to the arcs of this punctured circle. There’s some details to fill in here. But you probably believe me this could be done if I had to.

There’s two (or three) great branches of topology. One is called “algebraic topology”. It’s the one that makes for fun pop mathematics articles about imaginary rubber sheets. It’s called “algebraic” because this field makes it natural to study the holes in a sheet. And those holes tend to form groups and rings, basic pieces of Not That Algebra. The field (I’m told) can be interpreted as looking at functors on groups and rings. This makes for some neat tying-together of subjects this A To Z round.

The other branch is called “differential topology”, which is a great field to study because it sounds like what Mister Spock is thinking about. It inspires awestruck looks where saying you study, like, Bayesian probability gets blank stares. Differential topology is about differentiable functions on manifolds. This gets deep into mathematical physics.

As you study mathematical physics, you stop worrying about ever solving specific physics problems. Specific problems are petty stuff. What you like is solving whole classes of problems. A steady trick for this is to try to find some properties that are true about the problem regardless of what exactly it’s doing at the time. This amounts to finding a manifold that relates to the problem. Consider a central-force problem, for example, with planets orbiting a sun. A planet can’t move just anywhere. It can only be in places and moving in directions that give the system the same total energy that it had to start. And the same linear momentum. And the same angular momentum. We can match these constraints to manifolds. Whatever the planet does, it does it without ever leaving these manifolds. To know the shapes of these manifolds — how they are connected — and what kinds of functions are defined on them tells us something of how the planets move.

The maybe-third branch is “low-dimensional topology”. This is what differential topology is for two- or three- or four-dimensional spaces. You know, shapes we can imagine with ease in the real world. Maybe imagine with some effort, for four dimensions. This kind of branches out of differential topology because having so few dimensions to work in makes a lot of problems harder. We need specialized theoretical tools that only work for these cases. Is that enough to count as a separate branch? It depends what topologists you want to pick a fight with. (I don’t want a fight with any of them. I’m over here in numerical mathematics when I’m not merely blogging. I’m happy to provide space for anyone wishing to defend her branch of topology.)

But each grows out of this quite general, quite abstract idea, also known as “point-set topology”, that’s all about sets and collections of sets. There is much that we can learn from thinking about how to collect the things that are possible.

Advertisements

Reading the Comics, April 15, 2017: Extended Week Edition


It turns out last Saturday only had the one comic strip that was even remotely on point for me. And it wasn’t very on point either, but since it’s one of the Creators.com strips I’ve got the strip to show. That’s enough for me.

Henry Scarpelli and Craig Boldman’s Archie for the 8th is just about how algebra hurts. Some days I agree.

'Ugh! Achey head! All blocked up! Throbbing! Completely stuffed!' 'Sounds like sinuses!' 'No. Too much algebra!'
Henry Scarpelli and Craig Boldman’s Archie for the 8th of April, 2017. Do you suppose Archie knew that Dilton was listening there, or was he just emoting his fatigue to himself?

Ruben Bolling’s Super-Fun-Pak Comix for the 8th is an installation of They Came From The Third Dimension. “Dimension” is one of those oft-used words that’s come loose of any technical definition. We use it in mathematics all the time, at least once we get into Introduction to Linear Algebra. That’s the course that talks about how blocks of space can be stretched and squashed and twisted into each other. You’d expect this to be a warmup act to geometry, and I guess it’s relevant. But where it really pays off is in studying differential equations and how systems of stuff changes over time. When you get introduced to dimensions in linear algebra they describe degrees of freedom, or how much information you need about a problem to pin down exactly one solution.

It does give mathematicians cause to talk about “dimensions of space”, though, and these are intuitively at least like the two- and three-dimensional spaces that, you know, stuff moves in. That there could be more dimensions of space, ordinarily inaccessible, is an old enough idea we don’t really notice it. Perhaps it’s hidden somewhere too.

Amanda El-Dweek’s Amanda the Great of the 9th started a story with the adult Becky needing to take a mathematics qualification exam. It seems to be prerequisite to enrolling in some new classes. It’s a typical set of mathematics anxiety jokes in the service of a story comic. One might tsk Becky for going through university without ever having a proper mathematics class, but then, I got through university without ever taking a philosophy class that really challenged me. Not that I didn’t take the classes seriously, but that I took stuff like Intro to Logic that I was already conversant in. We all cut corners. It’s a shame not to use chances like that, but there’s always so much to do.

Mark Anderson’s Andertoons for the 10th relieves the worry that Mark Anderson’s Andertoons might not have got in an appearance this week. It’s your common kid at the chalkboard sort of problem, this one a kid with no idea where to put the decimal. As always happens I’m sympathetic. The rules about where to move decimals in this kind of multiplication come out really weird if the last digit, or worse, digits in the product are zeroes.

Mel Henze’s Gentle Creatures is in reruns. The strip from the 10th is part of a story I’m so sure I’ve featured here before that I’m not even going to look up when it aired. But it uses your standard story problem to stand in for science-fiction gadget mathematics calculation.

Dave Blazek’s Loose Parts for the 12th is the natural extension of sleep numbers. Yes, I’m relieved to see Dave Blazek’s Loose Parts around here again too. Feels weird when it’s not.

Bill Watterson’s Calvin and Hobbes rerun for the 13th is a resisting-the-story-problem joke. But Calvin resists so very well.

John Deering’s Strange Brew for the 13th is a “math club” joke featuring horses. Oh, it’s a big silly one, but who doesn’t like those too?

Dan Thompson’s Brevity for the 14th is one of the small set of punning jokes you can make using mathematician names. Good for the wall of a mathematics teacher’s classroom.

Shaenon K Garrity and Jefferey C Wells’s Skin Horse for the 14th is set inside a virtual reality game. (This is why there’s talk about duplicating objects.) Within the game, the characters are playing that game where you start with a set number (in this case 20) tokens and take turn removing a couple of them. The “rigged” part of it is that the house can, by perfect play, force a win every time. It’s a bit of game theory that creeps into recreational mathematics books and that I imagine is imprinted in the minds of people who grow up to design games.

Reading the Comics, April 5, 2016: April 5, 2016 Edition


I’ve mentioned I like to have five or six comic strips for a Reading The Comics entry. On the 5th, it happens, I got a set of five all at once. Perhaps some are marginal for mathematics content but since when does that stop me? Especially when there’s the fun of a single-day Reading The Comics post to consider. So here goes:

Mark Anderson’s Andertoons is a student-resisting-the-problem joke. And it’s about long division. I can’t blame the student for resisting. Long division’s hard to learn. It’s probably the first bit of arithmetic in which you just have to make an educated guess for an answer and face possibly being wrong. And this is a problem that’ll have a remainder in it. I think I remember early on in long division finding a remainder left over feeling like an accusation. Surely if I’d done it right, the divisor would go into the original number a whole number of times, right? No, but you have to warm up to being comfortable with that.

'This problem has me stumped, Hazel.' 'Think of it this way. Pac-Man gobbles up four monsters. Along come six space demons ... '
Ted Key’s Hazel rerun the 5th of April, 2016. Were the Pac-Man ghosts ever called space demons? It seems like they might’ve been described that way in some boring official manual that nobody ever read. I always heard them as “ghosts” anyway.

Ted Key’s Hazel feels less charmingly out-of-date when you remember these are reruns. Ted Key — who created Peabody’s Improbable History as well as the sitcom based on this comic panel — retired in 1993. So Hazel’s attempt to create a less abstract version of the mathematics problem for Harold is probably relatively time-appropriate. And recasting a problem as something less abstract is often a good way to find a solution. It’s all right to do side work as a way to get the work you want to do.

John McNamee’s Pie Comic is a joke about the uselessness of mathematics. Tch. I wonder if the problem here isn’t the abstractness of a word like “hypotenuse”. I grant the word doesn’t evoke anything besides “hypotenuse”. But one irony is that hypotenuses are extremely useful things. We can use them to calculate how far away things are, without the trouble of going out to the spot. We can imagine post-apocalyptic warlords wanting to know how far things are, so as to better aim the trebuchets.

Percy Crosby’s Skippy is a rerun from 1928, of course. It’s also only marginally on point here. The mention of arithmetic is irrelevant to the joke. But it’s a fine joke and I wanted people to read it. Longtime readers know I’m a Skippy fan. (Saturday’s strip follows up on this. It’s worth reading too.)

Zippy knows just enough about quantum mechanics to engender a smug attitude. 'BLACK HOLES don't exist! Actually, they're MAUVE!' He sees 14 dimensions inside a vitamin D pill. 'Wait! I just saw 3 more! I'll call them Larry, Moe, and Curly!' He holds sway on street corners even when no one is listening. 'GRAVITY is like a sheet of saran wrap! And we are DRUMSTICKS, encased in a riddle!' Does Zippy actually believe what he says when in rant mode? 'God doesn't play dice with the universe! He plays PARCHEESI!'
Bill Griffith’s Zippy the Pinhead for the 5th of April, 2016. Not what Neil DeGrasse Tyson is like when he’s not been getting enough sleep.

Bill Griffith’s Zippy the Pinhead has picked up some quantum mechanics talk. At least he’s throwing around the sorts of things we see in pop science and, er, pop mathematical talk about the mathematics of cutting-edge physics. I’m not aware of any current models of everything which suppose there to be fourteen, or seventeen, dimensions of space. But high-dimension spaces are common points of speculation. Most of those dimensions appear to be arranged in ways we don’t see in the everyday world, but which leave behind mathematical traces. The crack about God not playing dice with the universe is famously attributed to Albert Einstein. Einstein was not comfortable with the non-deterministic nature of quantum mechanics, that there is this essential randomness to this model of the world.

Packing For Higher Dimensions


You may have heard of the sphere-packing problem. If you haven’t, let me brief you. It’s a problem about how to pack a bunch of spheres. Particularly, it’s about how to place spheres, all the same size, so there’s as little wasted space as possible.

It’s not an easy problem. Johannes Kepler, whom you remember as the astronomer with the gold nose because you’ve mixed him up with Tycho Brahe, studied it. He conjectured, in 1611, that the best packing you could do was the “close packing”. You know this pattern because it’s what a stack of oranges ends up being. We believe he was right. A computer-assisted proof was published in 2005.

But if we’re comfortable with mathematics we know a sphere, or a ball, doesn’t have to be something as boring as the balls we have in the real world. We could consider a circle to be a two-dimensional sphere. We could make something four-dimensional that looks a lot like a sphere. Or five-dimensional. Or 800-dimensional, if we have some reason to do this. (We do!) And optimization problems can be strange things. How many dimensions of space something has can affect how easy or hard a problem is. But just having more dimensions doesn’t mean the problem is harder. Sometimes having a vaster space means the problem becomes easier.

There’s recently been a breakthrough in the eight dimension. A paper by Maryna S Viazovska, with the Berlin Mathematical School and the Humboldt University of Berlin, seems to have worked out the densest possible packing for eight-dimensional spheres. And better, it ties into this beautiful pattern known as the E8 lattice. The MathsByAGirl blog recently posted an essay about that, and I’d like to recommend folks over there.

And, because I’m like this, I’d like to point folks over to one of my old essays. I’d got to wondering what the least efficient sphere packings were. The answers might surprise you.

Reading the Comics, January 8, 2015: Rerun-Heavy Edition


I couldn’t think of what connective theme there might be to the mathematically-themed comic strips of the last couple days. It finally struck me: there’s a lot of reruns in this. That’ll do. Most of them are reruns from before I started writing about comics so much in these parts.

Bill Watterson’s Calvin and Hobbes for the 5th of January (a rerun, of course, from the 7th of January, 1986) is a kid-resisting-the-test joke. The particular form is trying to claim a religious exemption from mathematics tests. I sometimes see attempts to claim that mathematics is a kind of religion since, after all, you have to believe it’s true. I’ll grant that you do have to assume some things without proof. Those are the rules of logical inference, and the axioms of the field, particularly. But I can’t make myself buy a definition of “religion” that’s just “something you believe”.

But there are religious overtones to a lot of mathematics. The field promises knowable universal truths, things that are true regardless of who and in what context might know them. And the study of mathematical infinity seems to inspire thoughts of God. Amir D Aczel’s The Mystery Of The Aleph: Mathematics, The Kabbala, and the Search for Infinity is a good read on the topic. Addition is still not a kind of religion, though.

'My second boyfriend has a brain as big as a large seedless watermelon.' 'Robert, what is the square root of 2,647,129?' '1627 and how do you get ink stains out of your shirt pocket?'
Bud Grace’s The Piranha Club for the 6th of January, 2015.

Bud Grace’s The Piranha Club for the 6th of January uses the ability to do arithmetic as proof of intelligence. It’s a kind of intelligence, sure. There’s fun to be had in working out a square root in your head, or on paper. But there’s really no need for it now that we’ve got calculator technology, except for what it teaches you about how to compute.

Ruben Bolling’s Super-Fun-Pak Comix for the 6th of June is an installment of A Voice From Another Dimension. It’s just what the title suggests, and of course it would have to be a three-panel comic. The idea that creatures could live in more, or fewer, dimensions of space is a captivating one. It’s challenging to figure how it could work, though. Spaces of one or two dimensions don’t seem like they would allow biochemistry to work. And, as I understand it, chemistry itself seems unlikely to work right in four or more dimensions of space too. But it’s still fun to think about.

David L Hoyt and Jeff Knurek’s Jumble for the 7th of January is a counting-number joke. It does encourage asking whether numbers are created or discovered, which is a tough question. Counting numbers like “four” are so familiar and so apparently universal that they don’t seem to be constructs. (Even if they are, animals have an understanding of at least small counting numbers like these.) But if “four” is somehow not a human construct, then what about “4,000, 000,000, 000,000, 000,000, 000,000, 000,000”, a number so large it’s hard to think of something we have that many of that we can visualize. And even if that is, “one fourth” seems a bit different from that, and “four i” — the number which, squared, gives us negative 16 — seems qualitatively different. But if they’re constructs, then why do they correspond well to things we can see in the real world?

LIHYL (O O - - -), RUCYR (O - - O -), AMDTEN (O - - O O -), GAULEE (- O - O - O). The number that equals four plus four didn't exist until it was `(- - -) (- - - - -) (- -)'. Dashes between the parentheses in that last answer because it's some wordplay there.

David L Hoyt and Jeff Knurek’s Jumble for the 7th of January, 2016. The link will likely expire around mid-February.

Greg Curfman’s Meg Classics for the 7th of January originally ran the 19th of September, 1997. It’s about a kid distractingly interested in multiplication. You get these sometimes. My natural instinct is to put the bigger number first and the smaller number second in a multiplication. “2 times 27” makes me feel nervous in a way “27 times 2” never will.

Hector D Cantu and Carlos Castellanos’s Baldo for the 8th of January is a rerun from 2011. It’s an old arithmetic joke. I wouldn’t be surprised if George Burns and Gracie Allen did it. (Well, a little surprised. Gracie Allen didn’t tend to play quite that kind of dumb. But everybody tells some jokes that are a little out of character.)

The Set Tour, Part 8: Balls, Only Made Harder


I haven’t forgotten or given up on the Set Tour, don’t worry or celebrate. I just expected there to be more mathematically-themed comic strips the last couple days. Really, three days in a row without anything at ComicsKingdom or GoComics to talk about? That’s unsettling stuff. Ah well.

Sn

We are also starting to get into often-used domains that are a bit stranger. We are going to start seeing domains that strain the imagination more. But this isn’t strange quite yet. We’re looking at the surface of a sphere.

The surface of a sphere we call S2. The “S” suggests a sphere. The “2” means that we have a two-dimensional surface, which matches what we see with the surface of the Earth, or a beach ball, or a soap bubble. All these are sphere enough for our needs. If we want to say where we are on the surface of the Earth, it’s most convenient to do this with two numbers. These are a latitude and a longitude. The latitude is the angle made between the point we’re interested in and the equator. The longitude is the angle made between the point we’re interested in and a reference prime longitude.

There are some variations. We can replace the latitude, for example, with the colatitude. That’s the angle between our point and the north pole. Or we might replace the latitude with the cosine of the colatitude. That has some nice analytic properties that you have to be well into grad school to care about. It doesn’t matter. The details may vary but it’s all the same. We put in a number for the east-west distance and another for the north-south distance.

It may seem pompous to use the same system to say where a point is on the surface of a beach ball. But can you think of a better one? Pointing to the ball and saying “there”, I suppose. But that requires we go around with the beach ball pointing out spots. Giving two numbers saves us having to go around pointing.

(Some weenie may wish to point out that if we were clever we could describe a point exactly using only a single number. This is true. Nobody does that unless they’re weenies trying to make a point. This essay is long enough without describing what mathematicians really mean by “dimension”. “How many numbers normal people use to identify a point in it” is good enough.)

S2 is a common domain. If we talk about something that varies with your position on the surface of the earth, we’re probably using S2 as the domain. If we talk about the temperature as it varies with position, or the height above sea level, or the population density, we have functions with a domain of S2 and a range in R. If we talk about the wind speed and direction we have a function with domain of S2 and a range in R3, because the wind might be moving in any direction.

Of course, I wrote down Sn rather than just S2. As with Rn and with Rm x n, there is really a family of similar domains. They are common enough to share a basic symbol, and the superscript is enough to differentiate them.

What we mean by Sn is “the collection of points in Rn+1 that are all the same distance from the origin”. Let me unpack that a little. The “origin” is some point in space that we pick to measure stuff from. On the number line we just call that “zero”. On your normal two-dimensional plot that’s where the x- and y-axes intersect. On your normal three-dimensional plot that’s where the x- and y- and z-axes intersect.

And by “the same distance” we mean some set, fixed distance. Usually we call that the radius. If we don’t specify some distance then we mean “1”. In fact, this is so regularly the radius I’m not sure how we would specify a different one. Maybe we would write Snr for a radius of “r”. Anyway, Sn, the surface of the sphere with radius 1, is commonly called the “unit sphere”. “Unit” gets used a fair bit for shapes. You’ll see references to a “unit cube” or “unit disc” or so on. A unit cube has sides length 1. A unit disc has radius 1. If you see “unit” in a mathematical setting it usually means “this thing measures out at 1”. (The other thing it may mean is “a unit of measure, but we’re not saying which one”. For example, “a unit of distance” doesn’t commit us to saying whether the distance is one inch, one meter, one million light-years, or one angstrom. We use that when we don’t care how big the unit is, and only wonder how many of them we have.)

S1 is an exotic name for a familiar thing. It’s all the points in two-dimensional space that are a distance 1 from the origin. Real people call this a “circle”. So do mathematicians unless they’re comparing it to other spheres or hyperspheres.

This is a one-dimensional figure. We can identify a single point on it easily with just one number, the angle made with respect to some reference direction. The reference direction is almost always that of the positive x-axis. That’s the line that starts at the center of the circle and points off to the right.

S3 is the first hypersphere we encounter. It’s a surface that’s three-dimensional, and it takes a four-dimensional space to see it. You might be able to picture this in your head. When I try I imagine something that looks like the regular old surface of the sphere, only it has fancier shading and maybe some extra lines to suggest depth. That’s all right. We can describe the thing even if we can’t imagine it perfectly. S4, well, that’s something taking five dimensions of space to fit in. I don’t blame you if you don’t bother trying to imagine what that looks like exactly.

The need for S4 itself tends to be rare. If we want to prove something about a function on a hypersphere we usually make do with Sn. This doesn’t tell us how many dimensions we’re working with. But we can imagine that as a regular old sphere only with a most fancy job of drawing lines on it.

If we want to talk about Sn aloud, or if we just want some variation in our prose, we might call it an n-sphere instead. So the 2-sphere is the surface of the regular old sphere that’s good enough for everybody but mathematicians. The 1-sphere is the circle. The 3-sphere and so on are harder to imagine. Wikipedia asserts that 3-spheres and higher-dimension hyperspheres are sometimes called “glomes”. I have not heard this word before, and I would expect it to start a fight if I tried to play it in Scrabble. However, I do not do mathematics that often requires discussion of hyperspheres. I leave this space open to people who do and who can say whether “glome” is a thing.

Something that all these Sn sets have in common are that they are the surfaces of spheres. They are just the boundary, and omit the interior. If we want a function that’s defined on the interior of the Earth we need to find a different domain.

Reading the Comics, June 25, 2015: Not Making A Habit Of This Edition


I admit I did this recently, and am doing it again. But I don’t mean to make it a habit. I ran across a few comic strips that I can’t, even with a stretch, call mathematically-themed, but I liked them too much to ignore them either. So they’re at the end of this post. I really don’t intend to make this a regular thing in Reading the Comics posts.

Justin Boyd’s engagingly silly Invisible Bread (June 22) names the tuning “two steps below A”. He dubs this “negative C#”. This is probably an even funnier joke if you know music theory. The repetition of the notes in a musical scale could be used as an example of cyclic or modular arithmetic. Really, that the note above G is A of the next higher octave, and the note below A is G of the next lower octave, probably explains the idea already.

If we felt like, we could match the notes of a scale to the counting numbers. Match A to 0, B to 1, C to 2 and so on. Work out sharps and flats as you like. Then we could think of transposing a note from one key to another as adding or subtracting numbers. (Warning: do not try to pass your music theory class using this information! Transposition of keys is a much more subtle process than I am describing.) If the number gets above some maximum, it wraps back around to 0; if the number would go below zero, it wraps back around to that maximum. Relabeling the things in a group might make them easier or harder to understand. But it doesn’t change the way the things relate to one another. And that’s why we might call something F or negative C#, as we like and as we hope to be understood.

After a blackboard full of work the mathematician must conclude 'the solution is not in this piece of chalk'.
Hilary Price’s Rhymes With Orange for the 23rd of June, 2015.

Hilary Price’s Rhymes With Orange (June 23) reminds us how important it is to pick the correct piece of chalk. The mathematical symbols on the board don’t mean anything. A couple of the odder bits of notation might be meant as shorthand. Often in the rush of working out a problem some of the details will get written as borderline nonsense. The mathematician is probably more interested in getting the insight down. She’ll leave the details for later reflection.

Jason Poland’s Robbie and Bobby (June 23) uses “calculating obscure digits of pi” as computer fun. Calculating digits of pi is hard, at least in decimals, which is all anyone cares about. If you wish to know the 5,673,299,925th decimal digit of pi, you need to work out all 5,673,299,924 digits that go before it. There are formulas to work out a binary (or hexadecimal) digit of pi without working out all the digits that go before. This saves quite some time if you need to explore the nether-realms of pi’s digits.

The comic strip also uses Stephen Hawking as the icon for most-incredibly-smart-person. It’s the role that Albert Einstein used to have, and still shares. I am curious whether Hawking is going to permanently displace Einstein as the go-to reference for incredible brilliance. His pop culture celebrity might be a transient thing. I suspect it’s going to last, though. Hawking’s life has a tortured-genius edge to it that gives it Romantic appeal, likely to stay popular.

Paul Trap’s Thatababy (June 23) presents confusing brand-new letters and numbers. Letters are obviously human inventions though. They’ve been added to and removed from alphabets for thousands of years. It’s only a few centuries since “i” and “j” became (in English) understood as separate letters. They had been seen as different ways of writing the same letter, or the vowel and consonant forms of the same letter. If enough people found a proposed letter useful it would work its way into the alphabet. Occasionally the ampersand & has come near being a letter. (The ampersand has a fascinating history. Honestly.) And conversely, if we collectively found cause to toss one aside we could remove it from the alphabet. English hasn’t lost any letters since yogh (the Old English letter that looks like a 3 written half a line off) was dropped in favor of “gh”, about five centuries ago, but there’s no reason that it couldn’t shed another.

Numbers are less obviously human inventions. But the numbers we use are, or at least work like they are. Arabic numerals are barely eight centuries old in Western European use. Their introduction was controversial. People feared shopkeepers and moneylenders could easily cheat people unfamiliar with these crazy new symbols. Decimals, instead of fractions, were similarly suspect. Negative numbers took centuries to understand and to accept as numbers. Irrational numbers too. Imaginary numbers also. Indeed, look at the connotations of those names: negative numbers. Irrational numbers. Imaginary numbers. We can add complex numbers to that roster. Each name at least sounds suspicious of the innovation.

There are more kinds of numbers. In the 19th century William Rowan Hamilton developed quaternions. These are 4-tuples of numbers that work kind of like complex numbers. They’re strange creatures, admittedly, not very popular these days. Their greatest strength is in representing rotations in three-dimensional space well. There are also octonions, 8-tuples of numbers. They’re more exotic than quaternions and have fewer good uses. We might find more, in time.

Beside an Escher-esque house a woman says, 'The extra dimensions are wonderful, but oy, the property taxes.'
Rina Piccolo’s entry in Six Chix for the 24th of June, 2015.

Rina Piccolo’s entry in Six Chix this week (June 24) draws a house with extra dimensions. An extra dimension is a great way to add volume, or hypervolume, to a place. A cube that’s 20 feet on a side has a volume of 203 or 8,000 cubic feet, after all. A four-dimensional hypercube 20 feet on each side has a hypervolume of 160,000 hybercubic feet. This seems like it should be enough for people who don’t collect books.

Morrie Turner’s Wee Pals (June 24, rerun) is just a bit of wordplay. It’s built on the idea kids might not understand the difference between the words “ratio” and “racial”.

Tom Toles’s Randolph Itch, 2 am (June 25, rerun) inspires me to wonder if anybody’s ever sold novelty 4-D glasses. Probably they have, sometime.


Now for the comics that I just can’t really make mathematics but that I like anyway:

Phil Dunlap’s Ink Pen (June 23, rerun) is aimed at the folks still lingering in grad school. Please be advised that most doctoral theses do not, in fact, end in supervillainy.

Darby Conley’s Get Fuzzy (June 25, rerun) tickles me. But Albert Einstein did after all say many things in his life, and not everything was as punchy as that line about God and dice.

A Summer 2015 Mathematics A To Z: hypersphere


Hypersphere.

If you asked someone to say what mathematicians do, there are, I think, three answers you’d get. One would be “they write out lots of decimal places”. That’s fair enough; that’s what numerical mathematics is about. One would be “they write out complicated problems in calculus”. That’s also fair enough; say “analysis” instead of “calculus” and you’re not far off. The other answer I’d expect is “they draw really complicated shapes”. And that’s geometry. All fair enough; this is stuff real mathematicians do.

Geometry has always been with us. You may hear jokes about never using algebra or calculus or such in real life. You never hear that about geometry, though. The study of shapes and how they fill space is so obviously useful that you sound like a fool saying you never use it. That would be like claiming you never use floors.

There are different kinds of geometry, though. The geometry we learn in school first is usually plane geometry, that is, how shapes on a two-dimensional surface like a sheet of paper or a computer screen work. Here we see squares and triangles and trapezoids and theorems with names like “side-angle-side congruence”. The geometry we learn as infants, and perhaps again in high school, is solid geometry, how shapes in three-dimensional spaces work. Here we see spheres and cubes and cones and something called “ellipsoids”. And there’s spherical geometry, the way shapes on the surface of a sphere work. This gives us great circle routes and loxodromes and tales of land surveyors trying to work out what Vermont’s northern border should be.

Continue reading “A Summer 2015 Mathematics A To Z: hypersphere”

Reading the Comics, May 14, 2015: At The Cash Register Edition


This might not be the most exciting week of mathematically-themed comic strips. But it gives me the chance to be more autobiographical than usual. And it’s got more reruns than average, too.

Also, I’m trying out a new WordPress Theme. I’m a little suspicious of it myself, but will see what I think of it a week from now. Don’t worry, I remember the name of the old one in case I want to go back. Also, WordPress Master Command: stop hiding the option to live-preview themes instead of switching to them right away.

Epic Customer Fails: a customer insists a product, Regular $50.00, now 40% off, is ten bucks, not thirty.
Norm Feuti’s Retail For the 11th of May, 2015.

Norm Feuti’s Retail (May 11) led off a week of “Epic Customer Fails” with an arithmetic problem. My own work in retail was so long ago and for so short a time I don’t remember this happening. But I can believe in a customer being confused this way. I think there is a tendency to teach arithmetic problems as a matter of “pick out the numbers, pick out the operation, compute that”. This puts an emphasis placed on computing quickly. That seems to invite too-quick calculation of not-quite the right things. That percentages are a faintly exotic construct to many people doesn’t help either.

My own retail customers-with-percentages story is duller. A customer asked about a book, I believe an SAT preparation book, which had a 20 percent (or whatever) off sticker. He specifically wanted to know whether 20 percent was taken off the price before the sales tax (6 percent) was calculated, or whether the registers added the sales tax and then took 20 percent off that total. I tried to reassure him that it didn’t matter, the resulting price would be the same. He tried to reassure me that it did matter because the sales tax should be calculated on the price paid, not reduced afterward. I believed, then and now, that he was right legally, but for the practical point of how much he had to pay it made no difference.

He judged me warily, but I worked out what the price paid would be, and he let me ring the book up. And the price came out about a dollar too high. The bar code had a higher price for the book than the plain-english corner said. He snorted “Ha!” and may have told me so. I explained the problem, showing the bar code version of the price (it’s in the upper-right corner of the bar code on books) and the price I’d used to calculate. He repeated that this was why he had asked, while I removed the wrong price and entered the thing manually so I could put in the lower price. And took the 20 percent off, and added sales tax, which came out to what I had said the price was.

I don’t believe I ever saw him again, but I would like the world to know that I was right. And the SAT prep book-maker needed to not screw up their bar codes.

Continue reading “Reading the Comics, May 14, 2015: At The Cash Register Edition”

Reading the Comics, March 10, 2015: Shapes Of Things Edition


If there’s a theme running through today’s collection of mathematics-themed comic strips it’s shapes: I have good reason to talk about a way of viewing circles and spheres and even squares and boxes; and then both Euclid and men’s ties get some attention.

Eric the Circle (March 5), this one by “regina342”, does a bit of shape-name-calling. I trust that it’s not controversial that a rectangle is also a parallelogram, but people might be a bit put off by describing a circle as a sphere, what with circles being two-dimensional figures and spheres three-dimensional ones. For ordinary purposes of geometry that’s a fair enough distinction. Let me now make this complicated.

Continue reading “Reading the Comics, March 10, 2015: Shapes Of Things Edition”

When 2 plus 2 Equals 5, plus Another Unsettling Equation


I just wanted to note for folks who don’t read The Straight Dope — the first two books of which were unimaginably important to the teenage me, hundreds of pages of neat stuff to know delivered in a powerful style, that overwhelmed even The People’s Almanac 2 if you can imagine — that the Straight Dope Science Advisory board tried to take on the question of Does 2 + 2 equal 5 for very large values of 2?

Straight Dope Staffer Dex takes the question a bit more literally than I have ever interpreted the joke to be. I’ve basically read it as just justifying a nonsense result with a nonsense explanation, fitting in the spectrum of comic answers somewhere between King Lear’s understanding of why there are seven stars in the Pleiades and classic 1940s style double-talk. But Dex uses the equation to point out how rounding and estimation, essential steps in translating between the real world and the mathematical representation of the world, can produce results which are correct at every step but wrong in the whole, which is worth considering.


Also, in a bit of reading I’m doing and which I might rip off^W^W use as inspiration for some posts around here the (British) author dropped in an equation meant to be unsettling and, yeah, this unsettles me. Let me know what you think:

3 \mbox{ feet } + 2 \mbox{ tons } = 36 \mbox{ inches } + 2440 \mbox{ pounds }

I should say it’s not like I’m going to have nightmares about that, but it feels off anyway.

Looking At Things Four-Dimensionally


I’d like to close out the month by pointing to 4D Visualization, a web site set up by … well, I’m not sure the person, but the contact e-mail address is 4d ( at ) eusebeia.dyndns.org for whatever that’s worth. (Worse, I can not remember what site led me to it; if you’re out there, referent, please say so so I can thank you properly. In the meantime, thank you.) The author takes eleven chapters to discuss ways to visualize four-dimensional structures, and does quite a nice job at it. The ways we visualize three-dimensional structures are used heavily for analogies, and the illustrations — static and animated — build what feels like an intuitive bridge to me, at least.

Eusebeia (if I may use that as a name) goes through cross-sections, which are generally simple to render but which tax the imagination to put together1, and projections, and the subtleties in rendering two-dimensional images of three-dimensional projections of four-dimensional structures so that they’re sensible. It’s all quite good and I’m just sorry that my belief in the promise “More chapters coming soon!” clashes with the notice, “Last updated 13 Oct 2008”.

The main page is still being updated regularly, including a Polytope Of The Month feature. A polytope is what people call a polygon or polyhedron if they don’t want their discussion to carry the connotation of being about a two- or three-dimensional figure. It’s kind of the way someone in celestial mechanics talking about the orbit of an object around another might say periapsis and apoapsis, instead of perigee and apogee or perihelion and aphelion, although as far as I can tell people in celestial mechanics are only that precise if they suspect someone pedantic is watching them. I’m not well-versed enough to say how much polytope is used compared to polyhedron.

Anyway, for those looking for the chance to poke around higher dimensions, consider giving this a try; it’s a good read.

[1: I knew that a three-dimensional cube has, on the right slice, a hexagonal cross-section. It’s something I discovered while fiddling around with the problem of charged particles on a conductive-particule sphere, believe it or not. ]