I concede I am late in wrapping up last week’s mathematically-themed comics. But please understand there were important reasons for my not having posted this earlier, like, I didn’t get it written in time. I hope you understand and agree with me about this.
Bill Griffith’s Zippy the Pinhead for the 9th brings up mathematics in a discussion about perfection. The debate of perfection versus “messiness” begs some important questions. What I’m marginally competent to discuss is the idea of mathematics as this perfect thing. Mathematics seems to have many traits that are easy to think of as perfect. That everything in it should follow from clearly stated axioms, precise definitions, and deductive logic, for example. This makes mathematics seem orderly and universal and fair in a way that the real world never is. If we allow that this is a kind of perfection then … does mathematics reach it?

Even the idea of a “precise definition” is perilous. If it weren’t there wouldn’t be so many pop mathematics articles about why 1 isn’t a prime number. It’s difficult to prove that any particular set of axioms that give us interesting results are also logically consistent. If they’re not consistent, then we can prove absolutely anything, including that the axioms are false. That seems imperfect. And few mathematicians even prepare fully complete, step-by-step proofs of anything. It takes ridiculously long to get anything done if you try. The proofs we present tend to show, instead, the reasoning in enough detail that we’re confident we could fill in the omitted parts if we really needed them for some reason. And that’s fine, nearly all the time, but it does leave the potential for mistakes present.
Zippy offers up a perfect parallelogram. Making it geometry is of good symbolic importance. Everyone knows geometric figures, and definitions of some basic ideas like a line or a circle or, maybe, a parallelogram. Nobody’s ever seen one, though. There’s never been a straight line, much less two parallel lines, and even less the pair of parallel lines we’d need for a parallellogram. There can be renderings good enough to fool the eye. But none of the lines are completely straight, not if we examine closely enough. None of the pairs of lines are truly parallel, not if we extend them far enough. The figure isn’t even two-dimensional, not if it’s rendered in three-dimensional things like atoms or waves of light or such. We know things about parallelograms, which don’t exist. They tell us some things about their shadows in the real world, at least.

Mark Litzler’s Joe Vanilla for the 9th is a play on the old joke about “a billion dollars here, a billion dollars there, soon you’re talking about real money”. As we hear more about larger numbers they seem familiar and accessible to us, to the point that they stop seeming so big. A trillion is still a massive number, at least for most purposes. If you aren’t doing combinatorics, anyway; just yesterday I was doing a little toy problem and realized it implied 470,184,984,576 configurations. Which still falls short of a trillion, but had I made one arbitrary choice differently I could’ve blasted well past a trillion.

Ruben Bolling’s Super-Fun-Pak Comix for the 9th is another monkeys-at-typewriters joke, that great thought experiment about probability and infinity. I should add it to my essay about the Infinite Monkey Theorem. Part of the joke is that the monkey is thinking about the content of the writing. This doesn’t destroy the prospect that a monkey given enough time would write any of the works of William Shakespeare. It makes the simple estimates of how unlikely that is, and how long it would take to do, invalid. But the event might yet happen. Suppose this monkey decided there was no credible way to delay Hamlet’s revenge to Act V, and tried to write accordingly. Mightn’t the monkey make a mistake? It’s easy to type a letter you don’t mean to. Or a word you don’t mean to. Why not a sentence you don’t mean to? Why not a whole act you don’t mean to? Impossible? No, just improbable. And the monkeys have enough time to let the improbable happen.

Eric the Circle for the 10th, this one by Kingsnake, declares itself set in “the 20th dimension, where shape has no meaning”. This plays on a pop-cultural idea of dimensions as a kind of fairyland, subject to strange and alternate rules. A mathematician wouldn’t think of dimensions that way. 20-dimensional spaces — and even higher-dimensional spaces — follow rules just as two- and three-dimensional spaces do. They’re harder to draw, certainly, and mathematicians are not selected for — or trained in — drawing, at least not in United States schools. So attempts at rendering a high-dimensional space tend to be sort of weird blobby lumps, maybe with a label “N-dimensional”.
And a projection of a high-dimensional shape into lower dimensions will be weird. I used to have around here a web site with a rotatable tesseract, which would draw a flat-screen rendition of what its projection in three-dimensional space would be. But I can’t find it now and probably it ran as a Java applet that you just can’t get to work anymore. Anyway, non-interactive videos of this sort of thing are common enough; here’s one that goes through some of the dimensions of a tesseract, one at a time. It’ll give some idea how something that “should” just be a set of cubes will not look so much like that.

Steve Kelly and Jeff Parker’s Dustin for the 11th is a variation on the “why do I have to learn this” protest. This one is about long division and the question of why one needs to know it when there’s cheap, easily-available tools that do the job better. It’s a fair question and Hayden’s answer is a hard one to refute. I think arithmetic’s worth knowing how to do, but I’ll also admit, if I need to divide something by 23 I’m probably letting the computer do it.
And a couple of the comics that week seemed too slight to warrant discussion. You might like them anyway. Brian Boychuk and Ron Boychuk’s Chuckle Brothers for the 5th featured a poorly-written numeral. Charles Schulz’s Peanuts Begins rerun for the 6th has Violet struggling with counting. Glenn McCoy and Gary McCoy’s The Flying McCoys for the 8th has someone handing in mathematics homework. Henry Scarpelli and Craig Boldman’s Archie rerun for the 9th talks about Jughead sleeping through mathematics class. All routine enough stuff.
This and other Reading the Comics posts should appear at this link. I mean to have a post tomorrow, although it might make my work schedule a little easier to postpone that until Monday. We’ll see.