The Summer 2017 Mathematics A To Z: Volume Forms


I’ve been reading Elke Stangl’s Elkemental Force blog for years now. Sometimes I even feel social-media-caught-up enough to comment, or at least to like posts. This is relevant today as I discuss one of the Stangl’s suggestions for my letter-V topic.

Summer 2017 Mathematics A to Z, featuring a coati (it's kind of the Latin American raccoon) looking over alphabet blocks, with a lot of equations in the background.
Art courtesy of Thomas K Dye, creator of the web comic Newshounds. He has a Patreon for those able to support his work. He’s also open for commissions, starting from US$10.

Volume Forms.

So sometime in pre-algebra, or early in (high school) algebra, you start drawing equations. It’s a simple trick. Lay down a coordinate system, some set of axes for ‘x’ and ‘y’ and maybe ‘z’ or whatever letters are important. Look to the equation, made up of x’s and y’s and maybe z’s and so. Highlight all the points with coordinates whose values make the equation true. This is the logical basis for saying (eg) that the straight line “is” y = 2x + 1 .

A short while later, you learn about polar coordinates. Instead of using ‘x’ and ‘y’, you have ‘r’ and ‘θ’. ‘r’ is the distance from the center of the universe. ‘θ’ is the angle made with respect to some reference axis. It’s as legitimate a way of describing points in space. Some classrooms even have a part of the blackboard (whiteboard, whatever) with a polar-coordinates “grid” on it. This looks like the lines of a dartboard. And you learn that some shapes are easy to describe in polar coordinates. A circle, centered on the origin, is ‘r = 2’ or something like that. A line through the origin is ‘θ = 1’ or whatever. The line that we’d called y = 2x + 1 before? … That’s … some mess. And now r = 2\theta + 1 … that’s not even a line. That’s some kind of spiral. Two spirals, really. Kind of wild.

And something to bother you a while. y = 2x + 1 is an equation that looks the same as r = 2\theta + 1 . You’ve changed the names of the variables, but not how they relate to each other. But one is a straight line and the other a spiral thing. How can that be?

The answer, ultimately, is that the letters in the equations aren’t these content-neutral labels. They carry meaning. ‘x’ and ‘y’ imply looking at space a particular way. ‘r’ and ‘θ’ imply looking at space a different way. A shape has different representations in different coordinate systems. Fair enough. That seems to settle the question.

But if you get to calculus the question comes back. You can integrate over a region of space that’s defined by Cartesian coordinates, x’s and y’s. Or you can integrate over a region that’s defined by polar coordinates, r’s and θ’s. The first time you try this, you find … well, that any region easy to describe in Cartesian coordinates is painful in polar coordinates. And vice-versa. Way too hard. But if you struggle through all that symbol manipulation, you get … different answers. Eventually the calculus teacher has mercy and explains. If you’re integrating in Cartesian coordinates you need to use “dx dy”. If you’re integrating in polar coordinates you need to use “r dr dθ”. If you’ve never taken calculus, never mind what this means. What is important is that “r dr dθ” looks like three things multiplied together, while “dx dy” is two.

We get this explained as a “change of variables”. If we want to go from one set of coordinates to a different one, we have to do something fiddly. The extra ‘r’ in “r dr dθ” is what we get going from Cartesian to polar coordinates. And we get formulas to describe what we should do if we need other kinds of coordinates. It’s some work that introduces us to the Jacobian, which looks like the most tedious possible calculation ever at that time. (In Intro to Differential Equations we learn we were wrong, and the Wronskian is the most tedious possible calculation ever. This is also wrong, but it might as well be true.) We typically move on after this and count ourselves lucky it got no worse than that.

None of this is wrong, even from the perspective of more advanced mathematics. It’s not even misleading, which is a refreshing change. But we can look a little deeper, and get something good from doing so.

The deeper perspective looks at “differential forms”. These are about how to encode information about how your coordinate system represents space. They’re tensors. I don’t blame you for wondering if they would be. A differential form uses interactions between some of the directions in a space. A volume form is a differential form that uses all the directions in a space. And satisfies some other rules too. I’m skipping those because some of the symbols involved I don’t even know how to look up, much less make WordPress present.

What’s important is the volume form carries information compactly. As symbols it tells us that this represents a chunk of space that’s constant no matter what the coordinates look like. This makes it possible to do analysis on how functions work. It also tells us what we would need to do to calculate specific kinds of problem. This makes it possible to describe, for example, how something moving in space would change.

The volume form, and the tools to do anything useful with it, demand a lot of supporting work. You can dodge having to explicitly work with tensors. But you’ll need a lot of tensor-related materials, like wedge products and exterior derivatives and stuff like that. If you’ve never taken freshman calculus don’t worry: the people who have taken freshman calculus never heard of those things either. So what makes this worthwhile?

Yes, person who called out “polynomials”. Good instinct. Polynomials are usually a reason for any mathematics thing. This is one of maybe four exceptions. I have to appeal to my other standard answer: “group theory”. These volume forms match up naturally with groups. There’s not only information about how coordinates describe a space to consider. There’s ways to set up coordinates that tell us things.

That isn’t all. These volume forms can give us new invariants. Invariants are what mathematicians say instead of “conservation laws”. They’re properties whose value for a given problem is constant. This can make it easier to work out how one variable depends on another, or to work out specific values of variables.

For example, classical physics problems like how a bunch of planets orbit a sun often have a “symplectic manifold” that matches the problem. This is a description of how the positions and momentums of all the things in the problem relate. The symplectic manifold has a volume form. That volume is going to be constant as time progresses. That is, there’s this way of representing the positions and speeds of all the planets that does not change, no matter what. It’s much like the conservation of energy or the conservation of angular momentum. And this has practical value. It’s the subject that brought my and Elke Stangl’s blogs into contact, years ago. It also has broader applicability.

There’s no way to provide an exact answer for the movement of, like, the sun and nine-ish planets and a couple major moons and all that. So there’s no known way to answer the question of whether the Earth’s orbit is stable. All the planets are always tugging one another, changing their orbits a little. Could this converge in a weird way suddenly, on geologic timescales? Might the planet might go flying off out of the solar system? It doesn’t seem like the solar system could be all that unstable, or it would have already. But we can’t rule out that some freaky alignment of Jupiter, Saturn, and Halley’s Comet might not tweak the Earth’s orbit just far enough for catastrophe to unfold. Granted there’s nothing we could do about the Earth flying out of the solar system, but it would be nice to know if we face it, we tell ourselves.

But we can answer this numerically. We can set a computer to simulate the movement of the solar system. But there will always be numerical errors. For example, we can’t use the exact value of π in a numerical computation. 3.141592 (and more digits) might be good enough for projecting stuff out a day, a week, a thousand years. But if we’re looking at millions of years? The difference can add up. We can imagine compensating for not having the value of π exactly right. But what about compensating for something we don’t know precisely, like, where Jupiter will be in 16 million years and two months?

Symplectic forms can help us. The volume form represented by this space has to be conserved. So we can rewrite our simulation so that these forms are conserved, by design. This does not mean we avoid making errors. But it means we avoid making certain kinds of errors. We’re more likely to make what we call “phase” errors. We predict Jupiter’s location in 16 million years and two months. Our simulation puts it thirty degrees farther in its circular orbit than it actually would be. This is a less serious mistake to make than putting Jupiter, say, eight-tenths as far from the Sun as it would really be.

Volume forms seem, at first, a lot of mechanism for a small problem. And, unfortunately for students, they are. They’re more trouble than they’re worth for changing Cartesian to polar coordinates, or similar problems. You know, ones that the student already has some feel for. They pay off on more abstract problems. Tracking the movement of a dozen interacting things, say, or describing a space that’s very strangely shaped. Those make the effort to learn about forms worthwhile.

Advertisements

Peer Gibberish


Well, this is an embarrassing thing to see: according to Nature, the Springer publishing and the Institute of Electrical and Electronic Engineers (IEEE) have had to withdraw at least 120 papers from their subscription services, because the papers were gibberish produced by a program, SCIgen, that strings together words and phrases into computer science-ish texts. SCIgen and this sort of thing are meant for fun (Nature also linked to arXiv vs snarXiv, which lets you try to figure out whether titles are actual preprints on the arXiv server or gibberish), but such nonsense papers have been accepted for conferences or published in, typically, poorly-reviewed forums, to general amusement and embarrassment when it’s noticed.

I’m sympathetic to the people who were supposed to review these papers. It’s hard reading any kind of academic paper, for one. They tend to be written with the goal of presenting novel findings efficiently; whether they’re pleasant to read isn’t a factor. (I wouldn’t be surprised if authors had no idea how to write so as to be enjoyable to read, either. I didn’t get any training in writing-to-be-read and I don’t remember seeing courses in that.) It’s also very hard to read something outside your specialty: the terminology and vocabulary and writing styles can be ferociously localized. Just today I was reading a WordPress post which started from the equations Euler used to describe the flow of viscosity-free fluids, which was at the heart of my thesis, and before eight paragraphs it had got into symbols I barely recognized and into points I’ll need to re-read and re-think before I can grasp them. And reviewing papers is really unappreciated; the best you can really hope for is to dig deep into the paper and understand it so thoroughly you can write a better version of it than the authors did, and so be thanked for making perceptive criticisms when the revised version of the paper comes out. The system makes it too easy to conclude something like “well, I don’t really have the time to understand all of this, but I on skimming it I don’t see anything plainly offensive to all persons, so, it probably makes sense to people who are looking for this kind of paper” and go on to a more pressing deadline, and I admit I don’t have a better system in mind.

I’m also reminded of a bit of folklore from my grad school days, in a class on dynamical systems. That’s the study of physics-type problems, with the attention being not so much on actually saying what something will do from this starting point — for example, if you push this swing this hard, how long will it take to stop swinging — and more on what the different kinds of behavior are — can you make the swing just rock around a little bit, or loop around once and then rock to a stop, or loop around twice, or loop around four hundred times, or so on — and what it takes to change that behavior mode. The instructor referred us to a paper that was an important result but warned us to not bother trying to read it because nobody had ever understood it from the paper. Instead, it was understood — going back to the paper’s introduction — by people having the salient points explained by other people who’d had it taught to them in conversations, all the way back to the first understanders, who got it from the original authors, possibly in talking mathematics over while at the bar. I’m embarrassed to say I don’t remember which paper it was (it was a while ago and there are a lot of key results in the field), so I haven’t even been able to figure how to search for the paper or the lore around it.

October 2013’s Statistics


It’s been a month since I last looked over precisely how not-staggeringly-popular I am, so it’s time again.
For October 2013 I had 440 views, down from September’s 2013. These came from 220 distinct viewers, down again from the 237 that September gave me. This does mean there was a slender improvement in views per visitor, from 1.97 up to 2.00. Neither of these are records, although given that I had a poor updating record again this month that’s all tolerable.

The most popular articles from the past month are … well, mostly the comics, and the trapezoids come back again. I’ve clearly got to start categorizing the other kinds of polygons. Or else plunge directly into dynamical systems as that’s the other thing people liked. October 2013’s top hits were:

  1. Reading the Comics, October 8, 2013
  2. How Many Trapezoids I Can Draw
  3. Reading the Comics, September 11, 2013
  4. From ElKement: On The Relation Of Jurassic Park and Alien Jelly Flowing Through Hyperspace
  5. Reading the Comics, September 21, 2013
  6. The Mathematics of a Pricing Game

The country sending me the most readers again was the United States (226 of them), with the United Kingdom coming up second (37). Austria popped into third for, I think, the first time (25 views), followed by Denmark (21) and at long last Canada (18). I hope they still like me in Canada.

Sending just the lone reader each were a bunch of countries: Bermuda, Chile, Colombia, Costa Rica, Finland, Guatemala, Hong Kong, Laos, Lebanon, Malta, Mexico, the Netherlands, Oman, Romania, Saudi Arabia, Slovenia, Sweden, Turkey, and Ukraine. Finland and the Netherlands are repeats from last month, and the Netherlands is going on at least three months like this.