Reading the Comics, March 19, 2019: Average Edition


This time around, averages seem important.

Mark Anderson’s Andertoons for the 18th is the Mark Anderson’s Andertoons for the week. This features the kids learning some of the commonest terms in descriptive statistics. And, as Wavehead says, the similarity of names doesn’t help sorting them out. Each is a kind of average. “Mean” usually is the arithmetic mean, or the thing everyone including statisticians calls “average”. “Median” is the middle-most value, the one that half the data is less than and half the data is greater than. “Mode” is the most common value. In “normally distributed” data, these three quantities are all the same. In data gathered from real-world measurements, these are typically pretty close to one another. It’s very easy for real-world quantities to be normally distributed. The exceptions are usually when there are some weird disparities, like a cluster of abnormally high-valued (or low-valued) results. Or if there are very few data points.

On the blackboard the teacher's written Median, Mode, and Mean, with a bunch of numbers from 3 through 15. Wavehead: 'I know they're all subtly different, but I have to say, the alliteration doesn't help.'
Mark Anderson’s Andertoons for the 18th of March, 2019. Essays which discuss topics raised by Andertoons can be found at this link. Also at this link, nearly enough.

The word “mean” derives from the Old French “meien”, that is, “middle, means”. And that itself traces to the Late Latin “medianus”, and the Latin “medius”. That traces back to the Proto-Indo-European “medhyo”, meaning “middle”. That’s probably what you might expect, especially considering that the mean of a set of data is, if the data is not doing anything weird, likely close to the middle of the set. The term appeared in English in the middle 15th century.

The word “median”, meanwhile, follows a completely different path. That one traces to the Middle French “médian”, which traces to the Late Latin “medianus” and Latin “medius” and Proto-Indo-European “medhyo”. This appeared as a mathematical term in the late 19th century; Etymology Online claims 1883, but doesn’t give a manuscript citation.

The word “mode”, meanwhile, follows a completely different path. This one traces to the Old French “mode”, itself from the Latin “modus”, meaning the measure or melody or style. We get from music to common values by way of the “style” meaning. Think of something being done “á la mode”, that is, “in the [ fashionable or popular ] style”. I haven’t dug up a citation about when this word entered the mathematical parlance.

So “mean” and “median” don’t have much chance to do anything but alliterate. “Mode” is coincidence here. I agree, it might be nice if we spread out the words a little more.

Edison, pointing to a checkerboard: 'So Grandpa if you put one cookie on the first square, two on the second, four on the next, then eight, and you keep doubling them until you fill all 64 squares do you know what you'll end up with?' Grandpa: 'A stomachache for a month?'
John Hambrock’s The Brilliant Mind of Edison Lee for the 18th of March, 2019. I’ve been talking about this strip a lot lately, it seems to me. Essays where I do discuss Edison Lee are at this link.

John Hambrock’s The Brilliant Mind of Edison Lee for the 18th has Edison introduce a sequence to his grandfather. Doubling the number of things for each square of a checkerboard is an ancient thought experiment. The notion, with grains of wheat rather than cookies, seems to be first recorded in 1256 in a book by the scholar Ibn Khallikan. One story has it that the inventor of chess requested from the ruler that many grains of wheat as reward for inventing the game.

If we followed Edison Lee’s doubling through all 64 squares we’d have, in total, need for 263-1 or 18,446,744,073,709,551,615 cookies. You can see why the inventor of chess didn’t get that reward, however popular the game was. It stands as a good display of how exponential growth eventually gets to be just that intimidatingly big.

Edison, like many a young nerd, is trying to stagger his grandfather with the enormity of this. I don’t know that it would work. Grandpa ponders eating all that many cookies, since he’s a comical glutton. I’d estimate eating all that many cookies, at the rate of one a second, eight hours a day, to take something like eighteen billion centuries. If I’m wrong? It doesn’t matter. It’s a while. But is that any more staggering than imagining a task that takes a mere ten thousand centuries to finish?

Toby, looking at his homework, and a calculator, and a textbook: '... Wow. Crazy ... Huh. How about that? ... Am I stupid if math *always* has a surprise ending?'
Greg Cravens’s The Buckets for the 19th of March, 2019. It also seems like I discuss The Buckets more these days, as seen at this link.

Greg Cravens’s The Buckets for the 19th sees Toby surprised by his mathematics homework. He’s surprised by how it turned out. I know the feeling. Everyone who does mathematics enough finds that. Surprise is one of the delights of mathematics. I had a great surprise last month, with a triangle theorem. Thomas Hobbes, the philosopher/theologian, entered his frustrating sideline of mathematics when he found the Pythagorean Theorem surprising.

Mathematics is, to an extent, about finding interesting true statements. What makes something interesting? That depends on the person surprised, certainly. A good guideline is probably “something not obvious before you’ve heard it, thatlooks inevitable after you have”. That is, a surprise. Learning mathematics probably has to be steadily surprising, and that’s good, because this kind of surprise is fun.

If it’s always a surprise there might be trouble. If you’re doing similar kinds of problems you should start to see them as pretty similar, and have a fair idea what the answers should be. So, from what Toby has said so far … I wouldn’t call him stupid. At most, just inexperienced.

Caption: Eric had good feelings about his date. It turned out, contrary to what he first thought ... [ Venn Diagram picture of two circles with a good amount of overlap ] ... They actually had quite a lot in common.
Eric the Circle for the 19th of March, 2019, this one by Janka. This and other essays with Eric the Circle, by any artist, should be at this link.

Eric the Circle for the 19th, by Janka, is the Venn Diagram joke for the week. Properly any Venn Diagram with two properties has an overlap like this. We’re supposed to place items in both circles, and in the intersection, to reflect how much overlap there is. Using the sizes of each circle to reflect the sizes of both sets, and the size of the overlap to represent the size of the intersection, is probably inevitable. The shorthand calls on our geometric intuition to convey information, anyway.

She: 'What time is it?' He: 'The clock in the hall says 7:56, the oven clock says 8:02, the DVD clock says 8:07, and the bed table clock says 8:13.' She: 'Which one's right?' He: 'I dunno.' She: 'Let's ee. Four clocks ... carry the one ... divided by four ... ' He: 'Whenever we want to know what time it is we have to do algebra.' She: 'We better hurry, it's 8:05 and five-eighths!'
Tony Murphy’s It’s All About You for the 19th of March, 2019. And the occasional time I discuss something from It’s All About You are here.

Tony Murphy’s It’s All About You for the 19th has a bunch of things going on. The punch line calls “algebra” what’s really a statistics problem, calculating the arithmetic mean of four results. The work done is basic arithmetic. But making work seem like a more onerous task is a good bit of comic exaggeration, and algebra connotes something harder than arithmetic. But Murphy exaggerates with restraint: the characters don’t rate this as calculus.

Then there’s what they’re doing at all. Given four clocks, what’s the correct time? The couple tries averaging them. Why should anyone expect that to work?

There’s reason to suppose this might work. We can suppose all the clocks are close to the correct time. If they weren’t, they would get re-set, or not looked at anymore. A clock is probably more likely to be a little wrong than a lot wrong. You’d let a clock that was two minutes off go about its business, in a way you wouldn’t let a clock that was three hours and 42 minutes off. A clock is probably as likely to show a time two minutes too early as it is two minutes too late. This all suggests that the clock errors are normally distributed, or something like that. So the error of the arithmetic mean of a bunch of clock measurements we can expect to be zero. Or close to zero, anyway.

There’s reasons this might not work. For example, a clock might systematically run late. My mantle clock, for example, usually drifts about a minute slow over the course of the week it takes to wind. Or the clock might be deliberately set wrong: it’s not unusual to set an alarm clock to five or ten or fifteen minutes ahead of the true time, to encourage people to think it’s later than it really is and they should hurry up. Similarly with watches, if their times aren’t set by Internet-connected device. I don’t know whether it’s possible to set a smart watch to be deliberately five minutes fast, or something like that. I’d imagine it should be possible, but also that the people programming watches don’t see why someone might want to set their clock to the wrong time. From January to March 2018, famously, an electrical grid conflict caused certain European clocks to lose around six minutes. The reasons for this are complicated and technical, and anyway The Doctor sorted it out. But that sort of systematic problem, causing all the clocks to be wrong in the same way, will foil this take-the-average scheme.

Murphy’s not thinking of that, not least because this comic’s a rerun from 2009. He was making a joke, going for the funnier-sounding “it’s 8:03 and five-eights” instead of the time implied by the average, 8:04 and a half. That’s all right. It’s a comic strip. Being amusing is what counts.


There were just enough mathematically-themed comic strips this past week for one more post. When that is ready, it should be at this link. I’ll likely post it Tuesday.

Advertisements

Reading the Comics, March 14, 2019: Pi Day 2019 Edition


Some weeks there’s an obvious theme. Most weeks there’s not. But mid-March has formed a traditional theme for at least one day. I’m going to excerpt that from the rest of the week’s comics, because I’ve noticed what readership around here is like for stuff tagged “Pi Day” in mid-March. You all can do what you like with your pop-mathematics blogs.

Pi Day seems to have brought out fewer comics than in years past. The ones that were made, among the set I read, were also less on point. There was a lot of actual physical pie involved, too, suggesting the day might be escaping the realm of pop-mathematics silliness straight into pun nobody thinks about. Or maybe cartoonists just didn’t have a fresh angle this year.

John Hambrock’s The Brilliant Mind of Edison Lee shows off a nerd kind of mistake. At least one I think of as particularly nerdy. Wanting to calculate is a natural urge, especially for those who do it well. But to calculate the circumference of a pie from its diameter? What is exciting about that? More, does Grandpa recognize what a circumference is? It’s relatively easy to see the diameter of a pie. Area, also. But circumference? I’m not sure people are good at estimating the circumference of things, not by sight. You’d need a tape measure, or a similar flexible ruler, to start with and we don’t see that. Without the chance to measure it himself, Grandpa has to take the circumference (and, for that matter, diameter) at Edison Lee’s word. What would convince Grandpa of anything?

Edison: 'Happy Pi Day, Grandpa.' Grandpa: 'Is that today?' Edison: 'I'll demonstrate Pi by using it to calculate the circumference of this pie. [ He sets a pie on the table and calculates. ] If the diameter is 12 inches and we multiply by pi, which is 3.14, we'll end up with ... [ he looks up ] nothing.' Grandpa, who's already eaten the whole pie: 'Sorry, were you saying something?'
John Hambrock’s The Brilliant Mind of Edison Lee for the 14th of March, 2019. This and other essays inspired by Edison Lee can be found at this link.

For example, even if Grandpa accepted that Edison Lee had multiplied one number by 3.14 and gotten another number he might ask: how do we know pi is the same for pies of all sizes? Could a small pie’s circumference be only three times the diameter’s length, while a large pie’s is four times that? Could Edison offer an answer for why 3.14, or some nearby number, is all that interesting?

Hamster, holding up a pie: 'Guess what? It's national pie day!' Capybara: 'It's also my birthday.' Hamster: 'uh ... aand I got you this pie!'
Liz Climo’s Cartoons for the 14th of March, 2019. I haven’t had reason to discuss this comic here before. This and any future essays discussing Liz Climo Cartoons should appear at this new tag.

Liz Climo’s Cartoons is an example of the second kind of strip I mentioned during my introductory paragraphs. While it’s nominally built on Pi Day, any mathematics is gone. It’s just about the pun. And, well, the fun of having a capybara around.

Mark Parisi’s Off The Mark is the most on-topic strip for the day. And the anthropomorphic numerals joke for the day, too. It’s built on there being infinitely many digits to π, which, true enough. There are also infinitely many digits to \frac{1}{3} , mind; they’re just not so interesting a set. π being irrational gives us a never-ending variety of digits. It’s almost certainly normal, too. Any finite string of digits most likely appears infinitely often in this string.

Anthropomorphic 3, holding up a selfie stick; a decimal and the digits 1, 4, 1, 5, 9, 2, etc, all waving hands. 3: 'I don't think I can fit everyone in ... '
Mark Parisi’s Off The Mark for the 14th of March, 2019. The essays inspired by Off The Mark should appear at this link.

We won’t ever know enough digits of π to depict all of them. But we can depict the digits we know, and many different ways. Here’s a 2015 Washington Post article with several pictures representing the digits, including some neat “random walk” ones. In those the digits are used to represent directions and distances for a thing to move, and it represents the number as this curious wispy structure. There’s amazing pictures to be made of this.

Roy, who has a pie tin and mess on his face: 'It's OK, Norm. Kath and I agreed we both deserve to wear gag pies for forgetting what yesterday was.' Norm: 'My gosh, Roy --- you mean you both forgot your anniversary?' Roy: 'Oh, that's not yet. No, we forgot it was Pi day!' Norm: 'I'm officially in over my head ... '
John Zakour and Scott Roberts’s Working Daze for the 15th of March, 2019. And this comic appears often enough. Working Days strips should appear in discussions at this link.

John Zakour and Scott Roberts’s Working Daze for the 15th is built more around the pie pun. I was relieved to see this. The kind of nerd jokes routinely made in Working Daze made me think it was bizarre the comic strip didn’t do a Pi Day joke. They were saving the setup.

Pierpoint, porcupine, to Gunther, bear: 'Heh! Heh! If I baked 13 apple pies and gave you half of them, how many would you have?' Gunther: 'Obviously I'd have all of them.' Pierpoint, dejected: 'Obviously.'
Bill Schorr’s The Grizzwells for the 13th of March, 2019. I’ve had a few chances to mention The Grizzwells and those essays are at this link.

And last, a comic strip that I don’t think was trying to set up a Pi Day joke. But Bill Schorr’s The Grizzwells for the 13th is a routine story problem joke. But that the setup mentions pies? If this ran on the 14th I would feel confident Schorr was going for a Pi Day comic. But it didn’t, so I don’t know if Schorr was going for that or not.


And those are the surprisingly few Pi Day 2019 comic strips. Later this week I should post, at this link, other recent mathematically-themed comic strips. Thanks for reading.

Reading the Comics, December 4, 2018: Christmas Specials Edition


This installment took longer to write than you’d figure, because it’s the time of year we’re watching a lot of mostly Rankin/Bass Christmas specials around here. So I have to squeeze words out in-between baffling moments of animation and, like, arguing whether there’s any possibility that Jack Frost was not meant to be a Groundhog Day special that got rewritten to Christmas because the networks weren’t having it otherwise.

Graham Nolan’s Sunshine State for the 3rd is a misplaced Pi Day strip. I did check the copyright to see if it might be a rerun from when it was more seasonal.

Liz: 'I'm going to bake pies. What's your favorite?' 'Cherry!' 'Apple!' Liz 'Here comes Paul! Let's ask him, too.' Dink: 'He hates pie!' Paul: 'What are you talking about?' Dink: 'Nothing that would interest you.' Mel: 'We're talking about pie!' Paul: 'So you don't think I'm smart enough to discuss pi? Pi is the ratio of a circle's circumference to its diameter! It's a mathematical constant used in mathematics and physics! Its value is approximately 3.14159!' Mel: 'You forgot the most important thing about pie!' Paul: 'What's that?' Mel: 'It tastes delicious!' Dink: 'I hate pie!' Mel, Dink, and Liz: 'We know!'
Graham Nolan’s Sunshine State for the 3rd of December, 2018. This and other essays mentioning Sunshine State should be at this link. Or will be someday; it’s a new tag. Yeah, Paul’s so smart he almost knows the difference between it’s and its.

Jeffrey Caulfield and Brian Ponshock’s Yaffle for the 3rd is the anthropomorphic numerals joke for the week. … You know, I’ve always wondered in this sort of setting, what are two-digit numbers like? I mean, what’s the difference between a twelve and a one-and-two just standing near one another? How do people recognize a solitary number? This is a darned silly thing to wonder so there’s probably a good web comic about it.

An Old West town. an anthropomorphic 2 says to a 4, 'You know, Slim, I don't like the odds.' Standing opposite them, guns at the ready, are a hostile 5, 1, 3, and 7.
Jeffrey Caulfield and Brian Ponshock’s Yaffle for the 3rd of December, 2018. Essays inspired by Yaffle should appear at this link. It’s also a new tag, so don’t go worrying that there’s only this one essay there yet.

John Hambrock’s The Brilliant Mind of Edison Lee for the 4th has Edison forecast the outcome of a basketball game. I can’t imagine anyone really believing in forecasting the outcome, though. The elements of forecasting a sporting event are plausible enough. We can suppose a game to be a string of events. Each of them has possible outcomes. Some of them score points. Some block the other team’s score. Some cause control of the ball (or whatever makes scoring possible) to change teams. Some take a player out, for a while or for the rest of the game. So it’s possible to run through a simulated game. If you know well enough how the people playing do various things? How they’re likely to respond to different states of things? You could certainly simulate that.

Harley: 'C'mon, Edison, let's play basketball.' Edison: 'If I take into account the size and weight of the ball, the diameter of the hoop and your height in relation to it, and the number of hours someone your age would've had time to practice ... I can conclude that I'd win by 22 points. Nice game. Better luck next time.' Harley: 'But ... '
John Hambrock’s The Brilliant Mind of Edison Lee for the 4th of December, 2018. More ideas raised by Edison Lee I discuss at this link. Also it turns out Edison’s friend here is named Harley, which I mention so I have an easier time finding his name next time I need to refer to this strip. This will not work.

But all sorts of crazy things will happen, one game or another. Run the same simulation again, with different random numbers. The final score will likely be different. The course of action certainly will. Run the same simulation many times over. Vary it a little; what happens if the best player is a little worse than average? A little better? What if the referees make a lot of mistakes? What if the weather affects the outcome? What if the weather is a little different? So each possible outcome of the sporting event has some chance. We have a distribution of the possible results. We can judge an expected value, and what the range of likely outcomes is. This demands a lot of data about the players, though. Edison Lee can have it, I suppose. The premise of the strip is that he’s a genius of unlimited competence. It would be more likely to expect for college and professional teams.

Rover, dog: 'Can I help with your homework?' Red, kid: 'How are you at long division?' Rover: 'OK, I guess. Lemme see the problem first.' (Red holds the notes out to Rover, who tears the page off and chews it up.) Red: 'That was actually short division, but it'll do nicely for now.'
Brian Basset’s Red and Rover for the 4th of December, 2018. And more Red and Rover discussions are at this link.

Brian Basset’s Red and Rover for the 4th uses arithmetic as the homework to get torn up. I’m not sure it’s just a cameo appearance. It makes a difference to the joke as told that there’s division and long division, after all. But it could really be any subject.


I’m figuring to get to the letter ‘W’ in my Fall 2018 Mathematics A To Z glossary for Tuesday. Reading the Comics posts this week. And I also figure there should be two more When posted, they’ll be at this link.

Reading the Comics, November 27, 2018: Multiplication Edition


Last week Comic Strip Master Command sent out just enough on-theme comics for two essays, the way I do them these days. The first half has some multiplication in two of the strips. So that’s enough to count as a theme for me.

Aaron Neathery’s Endtown for the 26th depicts a dreary, boring school day by using arithmetic. A lot of times tables. There is some credible in-universe reason to be drilling on multiplication like this. The setting is one where the characters can’t expect to have computers available. That granted, I’m not sure there’s a point to going up to memorizing four times 27. Going up to twelve-times seems like enough for common uses. For multiplying two- and longer-digit numbers together we usually break the problem up into a string of single-digit multiplications.

A classroom teacher drills: 4 times 20 is 80. 4 times 21 is 84. 4 times 22 is 88. 4 times 23 is 92. Students struggle to stay awake. One, an anthropomorphic cat, glares at the insect companion of an anthropomorphic bird.
Aaron Neathery’s Endtown for the 26th of November, 2018. Other essays mentioning topics brought up by Endtown should go here. If there ever are any. This is a new tag, and the strip’s setting — adventures in a post-apocalyptic world that’s left what remains of humanity turned into anthropomorphized animals and clinging to subterranean shelters against the global wasteland — makes it kind of a hard one to fit in any good jokes about algebra.

There are a handful of bigger multiplications that can make your life easier to know, like how four times 25 is 100. Or three times 33 is pretty near 100. But otherwise? … Of course, the story needs the class to do something dull and seemingly pointless. Going deep into multiplication tables communicates that to the reader quickly.

Ernest: 'You say more people are watching your online arithmetic classes?' Frank: 'No, I said the audience is multiplying.'
Thaves’s Frank and Ernest for the 26th of November, 2018. Other appearances by Frank and/or Ernest should be at this link. This strip’s premise makes it rather easier to toss in a couple jokes about algebra.

Thaves’s Frank and Ernest for the 26th is a spot of wordplay. Also a shout-out to my friends who record mathematics videos for YouTube. It is built on the conflation between the ideas of something multiplying and the amount of something growing. It’s easy to see where the idea comes from; just keep hitting ‘x 2’ on a calculator and the numbers grow excitingly fast. You get even more exciting results with ‘x 3’ or ‘x π’. But multiplying by 1 is still multiplication. As is multiplying by a number smaller than 1. Including negative numbers. That doesn’t hurt the joke any. That multiplying two things together doesn’t necessarily give you something larger is a consideration when you’re thinking rigorously about what multiplication can do. It doesn’t have to be part of normal speech.

Edison, to his friend: 'Math problem: if my mom bakes 24 cookies, and I eat twenty ...' (He scarfs them down) ' ... how many cookies does she have left?' Mom: 'HEY!' Later, Edison, to Dad: 'Being a teacher is a thankless job.'
John Hambrock’s The Brilliant Mind of Edison Lee for the 27th of November, 2018. Essays mentioning topics raised by Edison Lee are at this link. The strip’s premise that Edison Lee is some kind of genius always doing weird stuff in science and computers make it fairly likely it’ll turn up.

John Hambrock’s The Brilliant Mind of Edison Lee for the 27th uses the form of a word problem to show off Edison’s gluttony. Edison tries to present it as teaching. We all have rationalizations for giving in to our appetites.

Anthropomorphized numeral 1 sitting at a bar. In the background a 3 is saying to a 5: 'Por fellow. One really is the loneliest number.'
Nate Frakes’s Break of Day for the 27th of November, 2018. And this and other appearances by Break of Day should be at this link. The strip’s premise as a Far Side-esque strange-joke-a-day means it ought to be a common presence here, but somehow it doesn’t appear as much as I’d expect.

Nate Frakes’s Break of Day for the 27th is the anthropomorphic numerals joke for the week. I don’t know that there’s anything in the other numerals being odds rather than evens, or a mixture of odds and evens. It might just be that they needed to be anything but 1.


All of my regular Reading the Comics posts should all be at this link. The next in my Fall 2018 Mathematics A To Z glossary should be posted Tuesday. I’m glad for it if you do come around and read again.

Reading the Comics, August 3, 2018: Negative Temperatures Edition


So I’m going to have a third Reading the Comics essay for last week’s strips. This happens sometimes. Two of the four strips for this essay mention percentages. But one of the others is so important to me that it gets naming rights for the essay. You’ll understand when I’m done. I hope.

Angie Bailey’s Texts From Mittens for the 2nd talks about percentages. That’s a corner of arithmetic that many people find frightening and unwelcoming. I’m tickled that Mittens doesn’t understand how easy it is to work out a percentage of 100. It’s a good, reasonable bit of characterization for a cat.

Mittens: 'What's 10% of 100?' '10. Why?' 'What's 20% of 100?' '20. Why, Mitty?' 'I think I ate between 10 and 20% of a bag of liver treats.' 'Mitten That's not good!' 'I'm trying to further my mathematical education, and you want me to be a simpleton!'
Angie Bailey’s Texts From Mittens for the 2nd of August, 2018. Before you ask whether this is really a comic strip, given that it’s all just text: well, Graffiti is a comic strip, isn’t it? I guess? Anyway it’s running on GoComics.com so it’s easy enough for me to read.

John Graziano’s Ripley’s Believe It Or Not for the 2nd is about a subject close to my heart. At least a third of it is. The mention of negative Kelvin temperatures set off a … heated … debate on the comments thread at GoComics.com. Quite a few people remember learning in school that the Kelvin temperature scale. It starts with the coldest possible temperature, which is zero. And that’s that. They have taken this to denounce Graziano as writing obvious nonsense. Well.

Something you should know about anything you learned in school: the reality is more complicated than that. This is true for thermodynamics. This is true for mathematics. This is true for anything interesting enough for humans to study. This also applies to stuff you learned as an undergraduate. Also to grad school.

1. While digging the Metro Red subway line in Los Angeles, crews uncovered fossils containing 39 species of newly discovered extinct fish. 2. The municipal police in Madrid, Spain, have successfully trained a service dog to demonstrate CPR. 3. A negative Kelvin temperature is actually hotter than a positive one.
John Graziano’s Ripley’s Believe It Or Not for the 2nd of August, 2018. … Why did the Madrid police train a dog to demonstrate CPR? I mean, it’s cute, and I guess it gets some publicity for emergency-health-care techniques but is it useful? For the time and effort invested? It seems peculiar to me.

So what are negative temperatures? At least on an absolute temperature scale, where the answer isn’t an obvious and boring “cold”? One clue is in the word “absolute” there. It means a way of measuring temperature that’s in some way independent of how we do the measurement. In ordinary life we measure temperatures with physical phenomena. Fluids that expand or contract as their temperature changes. Metals that expand or contract as their temperatures change. For special cases like blast furnaces, sample slugs of clays that harden or don’t at temperature. Observing the radiation of light off a thing. And these are all fine, useful in their domains. They’re also bound in particular physical experiments, though. Is there a definition of temperature that … you know … we can do mathematically?

Of course, or I wouldn’t be writing this. There are two mathematical-physics components to give us temperature. One is the internal energy of your system. This is the energy of whatever your thing is, less the gravitational or potential energy that reflects where it happens to be sitting. Also minus the kinetic energy that comes of the whole system moving in whatever way you like. That is, the energy you’d see if that thing were in an otherwise empty universe. The second part is — OK, this will confuse people. It’s the entropy. Which is not a word for “stuff gets broken”. Not in this context. The entropy of a system describes how many distinct ways there are for a system to arrange its energy. Low-entropy systems have only a few ways to put things. High-entropy systems have a lot of ways to put things. This does harmonize with the pop-culture idea of entropy. There are many ways for a room to be messy. There are few ways for it to be clean. And it’s so easy to make a room messier and hard to make it tidier. We say entropy tends to increase.

So. A mathematical physicist bases “temperature” on the internal energy and the entropy. Imagine giving a system a tiny bit more energy. How many more ways would the system be able to arrange itself with that extra energy? That gives us the temperature. (To be precise, it gives us the reciprocal of the temperature. We could set this up as how a small change in entropy affects the internal energy, and get temperature right away. But I have an easier time thinking of going from change-in-energy to change-in-entropy than the other way around. And this is my blog so I get to choose how I set things up.)

This definition sounds bizarre. But it works brilliantly. It’s all nice clean mathematics. It matches perfectly nice easy-to-work-out cases, too. Like, you may kind of remember from high school physics how the temperature of a gas is something something average kinetic energy something. Work out the entropy and the internal energy of an ideal gas. Guess what this change-in-entropy/change-in-internal-energy thing gives you? Exactly something something average kinetic energy something. It’s brilliant.

In ordinary stuff, adding a little more internal energy to a system opens up new ways to arrange that energy. It always increases the entropy. So the absolute temperature, from this definition, is always positive. Good stuff. Matches our intuition well.

So in 1956 Dr Norman Ramsey and Dr Martin Klein published some interesting papers in the Physical Review. (Here’s a link to Ramsey’s paper and here’s Klein’s, if you can get someone else to pay for your access.) Their insightful question: what happens if a physical system has a maximum internal energy? If there’s some way of arranging the things in your system so that no more energy can come in? What if you’re close to but not at that maximum?

It depends on details, yes. But consider this setup: there’s one, or only a handful, of ways to arrange the maximum possible internal energy. There’s some more ways to arrange nearly-the-maximum-possible internal energy. There’s even more ways to arrange not-quite-nearly-the-maximum-possible internal energy.

Look at what that implies, though. If you’re near the maximum-possible internal energy, then adding a tiny bit of energy reduces the entropy. There’s fewer ways to arrange that greater bit of energy. Greater internal energy, reduced entropy. This implies the temperature is negative.

So we have to allow the idea of negative temperatures. Or we have to throw out this statistical-mechanics-based definition of temperature. And the definition works so well otherwise. Nobody’s got an idea nearly as good for it. So mathematical physicists shrugged, and noted this as a possibility, but mostly ignored it for decades. If it got mentioned, it was because the instructor was showing off a neat weird thing. This is how I encountered it, as a young physics major full of confidence and not at all good on wedge products. But it was sitting right there, in my textbook, Kittel and Kroemer’s Thermal Physics. Appendix E, four brisk pages before the index. Still, it was an enchanting piece.

And a useful one, possibly the most useful four-page aside I encountered as an undergraduate. My thesis research simulated a fluid-equilibrium problem run at different temperatures. There was a natural way that this fluid would have a maximum possible internal energy. So, a good part — the most fascinating part — of my research was in the world of negative temperatures. It’s a strange one, one where entropy seems to work in reverse. Things build, spontaneously. More heat, more energy, makes them build faster. In simulation, a shell of viscosity-free gas turned into what looked for all the world like a solid shell.

All right, but you can simulate anything on a computer, or in equations, as I did. Would this ever happen in reality? … And yes, in some ways. Internal energy and entropy are ideas that have natural, irresistible fits in information theory. This is the study of … information. I mean, how you send a signal and how you receive a signal. It turns out a lot of laser physics has, in information theory terms, behavior that’s negative-temperature. And, all right, but that’s not what anybody thinks of as temperature.

Well, these ideas happen still. They usually need some kind of special constraint on the things. Atoms held in a magnetic field so that their motions are constrained. Vortices locked into place on a two-dimensional surface (a prerequisite to my little fluids problems). Atoms bound into a lattice that keeps them from being able to fly free. All weird stuff, yes. But all exactly as the statistical-mechanics temperature idea calls on.

And notice. These negative temperatures happen only when the energy is extremely high. This is the grounds for saying that they’re hotter than positive temperatures. And good reason, too. Getting into what heat is, as opposed to temperature, is an even longer discussion. But it seems fair to say something with a huge internal energy has more heat than something with slight internal energy. So Graziano’s Ripley’s claim is right.

(GoComics.com commenters, struggling valiantly, have tried to talk about quantum mechanics stuff and made a hash of it. As a general rule, skip any pop-physics explanation of something being quantum mechanics.)

If you’re interested in more about this, I recommend Stephen J Blundell and Katherine M Blundell’s Concepts in Thermal Physics. Even if you’re not comfortable enough in calculus to follow the derivations, the textbook prose is insightful.

Edison, explaining to the other kid who's always in this strip: 'This is my giraffe 'probability' Lego kit. For instance, if I shake the Legos in this box and dump them out, what is the probability that they'll land in the shape of a giraffe? Kids will enjoy hours and hours and eons searching for the answer.' Kid: 'Wow, that's sure to be a best-seller at Christmas.' Edison: 'That's what I'm thinking.'
John Hambrock’s The Brilliant Mind of Edison Lee for the 3rd of August, 2018. I’m sorry, I can’t remember who the other kid’s name is, but Edison Lee is always doing this sort of thing with him.

John Hambrock’s The Brilliant Mind of Edison Lee for the 3rd is a probability joke. And it’s built on how impossible putting together a particular huge complicated structure can be. I admit I’m not sure how I’d go about calculating the chance of a heap of Legos producing a giraffe shape. Imagine working out the number of ways Legos might fall together. Imagine working out how many of those could be called giraffe shapes. It seems too great a workload. And figuring it by experiment, shuffling Legos until a giraffe pops out, doesn’t seem much better.

This approaches an argument sometimes raised about the origins of life. Grant there’s no chance that a pile of Legos could be dropped together to make a giraffe shape. How can the much bigger pile of chemical elements have been stirred together to make an actual giraffe? Or, the same problem in another guise. If a monkey could go at a typewriter forever without typing any of Shakespeare’s plays, how did a chain of monkeys get to writing all of them?

And there’s a couple of explanations. At least partial explanations. There is much we don’t understand about the origins of life. But one is that the universe is huge. There’s lots of stars. It looks like most stars have planets. There’s lots of chances for chemicals to mix together and form a biochemistry. Even an impossibly unlikely thing will happen, given enough chances.

And another part is selection. A pile of Legos thrown into a pile can do pretty much anything. Any piece will fit into any other piece in a variety of ways. A pile of chemicals are more constrained in what they can do. Hydrogen, oxygen, and a bit of activation energy can make hydrogen-plus-hydroxide ions, water, or hydrogen peroxide, and that’s it. There can be a lot of ways to arrange things. Proteins are chains of amino acids. These chains can be about as long as you like. (It seems.) (I suppose there must be some limit.) And they curl over and fold up in some of the most complicated mathematical problems anyone can even imagine doing. How hard is it to find a set of chemicals that are a biochemistry? … That’s hard to say. There are about twenty amino acids used for proteins in our life. It seems like there could be a plausible life with eighteen amino acids, or 24, including a couple we don’t use here. It seems plausible, though, that my father could have had two brothers growing up; if there were, would I exist?

Teacher: 'Jonson, if you had a dozen apples and Fitzcloon had ten apples ... and he took 30% of your apples, what should he have?' Jonson (towering over and sneering at Fitzcloon): 'HEALTH INSURANCE.'
Jason Chatfield’s Ginger Meggs for the 3rd of August, 2018. This doesn’t relate to the particular comic any. Wikipedia says that in January 2017 they launched a special version of the strip, designed for people to read on mobile phones, where the panels progress vertically so you just scroll down to read them. This tickles the part of me that was fascinated how pre-Leap-Day-1988 Peanuts strips could be arranged as one row of four panels, two rows of two panels, or four rows of one panel to fit a newspaper’s needs. I’m not mocking the idea. I’d love it if comic strips could be usefully read on mobile devices. I can’t imagine my Reading the Comics workflow working with one, though.

Jason Chatfield’s Ginger Meggs for the 3rd is a story-problem joke. Familiar old form to one. The question seems to be a bit mangled in the asking, though. Thirty percent of Jonson’s twelve apples is a nasty fractional number of apples. Surely the question should have given Jonson ten and Fitzclown twelve apples. Then thirty percent of Jonson’s apples would be a nice whole number.


I talk about mathematics themes in comic strips often, and those essays are gathered at this link. You might enjoy more of them. If Texts From Mittens gets on-topic for me again I’ll have an essay about it at this link.. (It’s a new tag, and a new comic, at least at GoComics.com.) Other discussions of Ripley’s Believe It Or Not strips are at this link and probably aren’t all mentions of Rubik’s Cubes. The Brilliant Mind of Edison Lee appears in essays at this link. And other appearances of Ginger Meggs are at this link. And so yeah, that one Star Trek: The Next Generation episode where they say the surface temperature is like negative 300 degrees Celsius, and therefore below absolute zero? I’m willing to write that off as it’s an incredibly high-energy atmosphere that’s fallen into negative (absolute) temperatures. Makes the place more exotic and weird. They need more of that.

Reading the Comics, January 9, 2018: Be Squared Edition


It wasn’t just another busy week from Comic Strip Master Command. And a week busy enough for me to split the mathematics comics into two essays. It was one where I recognized one of the panels as one I’d featured before. Multiple times. Some of the comics I feature are in perpetual reruns and don’t have your classic, deep, Peanuts-style decades of archives to draw from. I don’t usually go checking my archives to see if I’ve mentioned a comic before, not unless something about it stands out. So for me to notice I’ve seen this strip repeatedly can mean only one thing: there was something a little bit annoying about it. Recognize it yet? You will.

Hy Eisman’s Popeye for the 7th of January, 2018 is an odd place for mathematics to come in. J Wellington Wimpy regales Popeye with all the intellectual topics he tried to impress his first love with, and “Euclidean postulates in the original Greek” made the cut. And, fair enough. Euclid’s books are that rare thing that’s of important mathematics (or scientific) merit and that a lay person can just pick up and read, even for pleasure. These days we’re more likely to see a division between mathematics writing that’s accessible but unimportant (you know, like, me) or that’s important but takes years of training to understand. Doing it in the original Greek is some arrogant showing-off, though. Can’t blame Carolyn for bailing on someone pulling that stunt.

Popeye: 'Did ya ever think of gittin' hitched?' Wimpy: 'Many times! I didn't plan to be a bachelor. In fact, my first love was Carolyn. While we dined on burgers at Roughhouse's she listened to my discourse on Schopenhauer, followed by my chat that included both Kafka and Camus. Then, as I walked her home, I recited Euclidean postulates in the original Greek!' Popeye: 'Y'wuz really on a roll!' Wimpy: 'When we got to her door she said, 'Wimpy, it's been a perfect evening. Please don't spoil it by EVER asking me out again!''.
Hy Eisman’s Popeye for the 7th of January, 2018. Why does Wimpy’s shirt have a belly button?

Mark O’Hare’s Citizen Dog rerun for the 7th continues last essay’s storyline about Fergus taking Maggie’s place at school. He’s having trouble understanding the story within a story problem. I sympathize.

John Hambrock’s The Brilliant Mind of Edison Lee for the 8th is set in mathematics class. And Edison tries to use a pile of mathematically-tinged words to explain why it’s okay to read a Star Wars book instead of paying attention. Or at least to provide a response the teacher won’t answer. Maybe we can make something out of this by allowing the monetary value of something to be related to its relevance. But if we allow that then Edison’s messed up. I don’t know what quantity is measured by multiplying “every Star Wars book ever written” by “all the movies and merchandise”. But dividing that by the value of the franchise gets … some modest number in peculiar units divided by a large number of dollars. The number value is going to be small. And the dimensions are obviously crazy. Edison needs to pay better attention to the mathematics.

Teacher: 'Mister Lee, what are you reading?' Edison Lee: 'The Legends of Luke Skywalker.' Teacher: 'Ah, and how would that be relevant to this math class?' Edison: 'If you take every Star Wars book ever written, multiply them by all the movies and merchandise, and divide that by the net worth of the franchise, you have a small fortune of relevance.' (Teacher looks away.) Edison thinks: 'My mouth needs a seven-second broadcast delay.'
John Hambrock’s The Brilliant Mind of Edison Lee for the 8th of January, 2018. No, I haven’t got any idea how the third panel leads to the fourth. I mean, I know what should lead from there to there — a moment of Edison realizing he’s said something so impolitic he can’t carry on — but that moment isn’t there. The teacher seems to just shrug the whole nonsense off. Something went wrong in the composing of the joke.

Johnny Hart’s B.C. for the 14th of July, 1960 shows off the famous equation of the 20th century. All part of the comic’s anachronism-comedy chic. The strip reran the 9th of January. “E = mc2” is, correctly, associated with Albert Einstein and some of his important publications of 1905. But the expression does have some curious precursors, people who had worked out the relationship (or something close to it) before Einstein and who didn’t quite know what they had. A short piece from Scientific American a couple years back describes pre-Einstein expressions of the equation from Oliver Heaviside, Henri Poincaré, and Fritz Hasenöhrl. I’m not surprised Poincaré had something close to this; it seems like he spent twenty years almost discovering Relativity. That’s all right; he did enough in dynamical systems that mathematicians aren’t going to forget him.

Tim Lachowski’s Get A Life for the 9th is at least the fourth time I’ve seen this panel since I started doing Reading the Comics posts regularly. (Previous times: the 5th of November, 2012 and the 10th of March, 2015 and the 14th of July, 2016.) I’m like this close to concluding the strip’s in perpetual rerun and I can drop it from my daily reading.

Jason Chatfield’s Ginger Meggs for the 9th draws my eye just because the blackboard lists “Prime Numbers”. Fair enough place setting, although what’s listed are 1, 3, 5, and 7. These days mathematicians don’t tend to list 1 as a prime number; it’s inconvenient. (A lot of proofs depend on their being exactly one way to factorize a number. But you can always multiply a number by ‘1’ a couple more times without changing its value. So ‘6’ is 3 times 2, but it’s also 3 times 2 times 1, or 3 times 2 times 1 times 1, or 3 times 2 times 1145,388,434,247. You can write around that, but it’s easier to define ‘1’ as not a prime.) But it could be defended. I can’t think any reason to leave ‘2’ off a list of prime numbers, though. I think Chatfield conflated odd and prime numbers. If he’d had a bit more blackboard space we could’ve seen whether the next item was 9 or 11 and that would prove the matter.

Paul Trap’s Thatababy for the 9th uses arithmetic — square roots — as the kind of thing to test whether a computer’s working. Everyone has their little tests like this. My love’s father likes to test whether the computer knows of the band Walk The Moon or of Christine Korsgaard (a prominent philosopher in my love’s specialty). I’ve got a couple words I like to check dictionaries for. Of course the test is only any good if you know what the answer should be, and what’s the actual square root of 3,278? Goodness knows. It’s got to be between 50 (50 squared is 25 hundred) and 60 (60 squared is 36 hundred). Since 3,278 is so much closer 3,600 than 2,500 its square root should be closer to 60 than to 50. So 57-point-something is plausible. Unfortunately square roots don’t lend themselves to the same sorts of tricks from reading the last digit that cube roots do. And 3,278 isn’t a perfect square anyway. Alexa is right on this one. Also about the specific gravity of cobalt, at least if Wikipedia is right and not conspiring with the artificial intelligences on this one. Catch you in 2021.

Charles Schulz’s Peanuts for the 8th of October, 1953, is about practical uses of mathematics. It got rerun on the 9th of January.

Reading the Comics, April 18, 2017: Give Me Some Word Problems Edition


I have my reasons for this installment’s title. They involve my deductions from a comic strip. Give me a few paragraphs.

Mark Anderson’s Andertoons for the 16th asks for attention from whatever optician-written blog reads the comics for the eye jokes. And meets both the Venn Diagram and the Mark Anderson’s Andertoons content requirements for this week. Good job! Starts the week off strong.

Lincoln Pierce’s Big Nate: First Class for the 16th, rerunning the strip from 1993, is about impossibly low-probability events. We can read the comic as a joke about extrapolating a sequence from a couple examples. Properly speaking we can’t; any couple of terms can be extended in absolutely any way. But we often suppose a sequence follows some simple pattern, as many real-world things do. I’m going to pretend we can read Jenny’s estimates of the chance she’ll go out with him as at all meaningful. If Jenny’s estimate of the chance she’d go out with Nate rose from one in a trillion to one in a billion over the course of a week, this could be a good thing. If she’s a thousand times more likely each week to date him — if her interest is rising geometrically — this suggests good things for Nate’s ego in three weeks. If she’s only getting 999 trillionths more likely each week — if her interest is rising arithmetically — then Nate has a touch longer to wait before a date becomes likely.

(I forget whether she has agreed to a date in the 24 years since this strip first appeared. He has had some dates with kids in his class, anyway, and some from the next grade too.)

J C Duffy’s Lug Nuts for the 16th is a Pi Day joke that ran late.

Jef Mallett’s Frazz for the 17th starts a little thread about obsolete references in story problems. It’s continued on the 18th. I’m sympathetic in principle to both sides of the story problem debate.

Is the point of the first problem, Farmer Joe’s apples, to see whether a student can do a not-quite-long division? Or is it to see whether the student can extract a price-per-quantity for something, and apply that to find the quantity to fit a given price? If it’s the latter then the numbers don’t make a difference. One would want to avoid marking down a student who knows what to do, and could divide 15 cents by three, but would freeze up if a more plausible price of, say, $2.25 per pound had to be divided by three.

But then the second problem, Mr Schad driving from Belmont to Cadillac, got me wondering. It is about 84 miles between the two Michigan cities (and there is a Reed City along the way). The time it takes to get from one city to another is a fair enough problem. But these numbers don’t make sense. At 55 miles per hour the trip takes an awful 1.5273 hours. Who asks elementary school kids to divide 84 by 55? On purpose? But at the state highway speed limit (for cars) of 70 miles per hour, the travel time is 1.2 hours. 84 divided by 70 is a quite reasonable thing to ask elementary school kids to do.

And then I thought of this: you could say Belmont and Cadillac are about 88 miles apart. Google Maps puts the distance as 86.8 miles, along US 131; but there’s surely some point in the one town that’s exactly 88 miles from some point in the other, just as there’s surely some point exactly 84 miles from some point in the other town. 88 divided by 55 would be another reasonable problem for an elementary school student; 1.6 hours is a reasonable answer. The (let’s call it) 1980s version of the question ought to see the car travel 88 miles at 55 miles per hour. The contemporary version ought to see the car travel 84 miles at 70 miles per hour. No reasonable version would make it 84 miles at 55 miles per hour.

So did Mallett take a story problem that could actually have been on an era-appropriate test and ancient it up?

Before anyone reports me to Comic Strip Master Command let me clarify what I’m wondering about. I don’t care if the details of the joke don’t make perfect sense. They’re jokes, not instruction. All the story problem needs to set up the joke is the obsolete speed limit; everything else is fluff. And I enjoyed working out variation of the problem that did make sense, so I’m happy Mallett gave me that to ponder.

Here’s what I do wonder about. I’m curious if story problems are getting an unfair reputation. I’m not an elementary school teacher, or parent of a kid in school. I would like to know what the story problems look like. Do you, the reader, have recent experience with the stuff farmers, drivers, and people weighing things are doing in these little stories? Are they measuring things that people would plausibly care about today, and using values that make sense for the present day? I’d like to know what the state of story problems is.

Lee: 'I'm developing a new theory about avocado intelligence.' Joules: 'You can't be serious.' Lee: 'Avocado, what is the square root of 8,649?' Avocado: 'That's easy. It's 92?' Lee: 'Wrong. It's 93.' Joules: 'See? It's just a dumb piece of fruit.' Lee: 'I honestly thought I was on to something.'
John Hambrock’s The Brilliant Mind of Edison Lee for the 18th of April, 2017. Before you ask what exactly the old theory of avocado intelligence was remember that Edison Lee’s lab partner there is a talking rat. Just saying.

John Hambrock’s The Brilliant Mind of Edison Lee for the 18th uses mental arithmetic as the gauge of intelligence. Pretty harsly, too. I wouldn’t have known the square root of 8649 off the top of my head either, although it’s easy to tell that 92 can’t be right: the last digit of 92 squared has to be 4. It’s also easy to tell that 92 has to be about right, though, as 90 times 90 will be about 8100. Given this information, if you knew that 8,649 was a perfect square, you’d be hard-pressed to think of a better guess for its value than 93. But since most whole numbers are not perfect squares, “a little over 90” is the best I’d expect to do.